

The Certification Mark for Onsite Sustainable Energy Technologies

Representing the best in electric engineering and building service

Guide to the Installation of Photovoltaic Systems

Published by the Microgeneration Certification Scheme ('MCS'), 10 Fenchurch Street, London EC3M 3BE

Website www.microgenerationcertification.org

Hard copy distributed by the Electrical Contractors Association ('ECA'), ESCA House, 34 Palace Court, London W2 4HY

Website www.eca.co.uk

© 2012

MCS as copyright owners assert their moral rights to be recognised as authors of this work with support and assistance from the MCS Solar PV Technical Working Group. Limited licence is given to reproduce images, text and graphics in any medium wholly or in part for information or research only on condition that the copyright is acknowledged and that reproduction is made without charge to any recipient.

First published: 2012

A catalogue record for this book is available from the British Library: ISBN 978-0-9574827-0-8– Hard Copy ISBN 978-0-9574827-1-5– Electronic PDF

Typeset, printed and bound in Great Britain by Reliance Press, Catton Road, Arnold, Nottingham.

Disclaimer

This publication is intended to provide general guidance only. It relates only to the laws of England and Wales and of Scotland but does not purport to be comprehensive or to give specific legal advice.

Although MCS has endeavoured to ensure that the content of this publication is accurate and up to date, users should always seek specific advice before taking or refraining from any action including making use of any source materials quoted. All other trademarks, collective marks, certification marks or copyrighted items not owned by MCS that appear in this publication are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by MCS. The ECA logo is a registered collective mark and owned by the Electrical Contractors' Association.

MCS does not accept any liability, including liability for negligence, for the content of this publication nor for the content of any websites or documents written by 3rd parties referenced in this publication.

The Certification Mark for Onsite Sustainable Energy Technologies The Microgeneration Certification Scheme (MCS) is an industry led certification scheme for microgeneration products and installation services.

Supported by the Department for Energy and Climate Change (DECC), MCS seeks to build consumer confidence and support the development of robust industry standards. It provides confidence in the marketplace and wholly supports government policy within the microgeneration sector.

With support from industry and key stakeholders, MCS has established a number of installation standards and scheme documents for a range of microgeneration technologies. These standards and documents have helped to shape the microgeneration sector, and ensure best practice for the installation and quality of these renewable technology systems.

MCS is pleased to have worked to develop this new guide for the installation of solar photovoltaic systems. We would like to thank the members of the MCS solar photovoltaic technical working group for their time and effort in the significant updates to this new solar photovoltaic installation guide.

For further information about MCS, please visit www.microgenerationcertification.org.

Representing the best in electrical engineering and building services

MCS is grateful for the work from the Electrical Contractors Association (ECA).

ECA is recognised as one of the leading trade associations for the electrotechnical sector, and has assisted with typesetting and distributing the hard copy of this co-branded guide, whilst also assisting with technical input throughout.

The ECA has been a Trade Association for nearly 110 years and has been a contributor to a wide number of technical documents within the sector, the "Guide to the installation of Photovoltaic Systems" is just one of these.

For further information about ECA please visit www.eca.co.uk

Guide to the Installation of Photovoltaic Systems

2012

Representing the best in electrical engineering and building services

Foreword and Thanks

This guide is based upon the publication "Photovoltaics in Buildings, Guide to the installation of PV systems 2nd Edition" (DTI/Pub URN 06/1972). Whilst this guide is based up the original content of the above publication it has been written independently of any government departments. We do remain consistently grateful and our thanks go to those whom contributed to the original versions for their continued help and support.

Foreword by the Chairman of the MCS Solar Photovoltaic Working Group:

It is over two years since the MCS Solar Photovoltaic technical working group decided to undertake an overhaul of the technical standards and also update the reference guide to the installation of PV systems. With the introduction of the Feed -in Tariff in 2010, those two years have seen a changing industry. The number of installation companies has grown from a small base to over 4000 and recent estimates put total employment in installation alone at around 30,000. The installed capacity has also passed the 1GW milestone, which is a major achievement for the UK.

As the industry has developed, we have learnt how to do many things better. We have also learned that some of the things we were doing that were precautionary have proved, through experience, to be unnecessary. The aim of this update has been to capture these changes so we can deliver an improved yet better value product for our customers who should also be better informed at the time of purchase. We hope you welcome the changes.

Solar PV is here to stay and is the technology that is now no longer an expensive lifestyle product for idealists but an affordable and attractive option. It is a familiar proposition for individuals and companies alike looking to protect themselves from the inexorable rise in the price of grid electricity. The long term outlook for solar PV is in my view a bright one.

Finally, I would like to thank the members of the MCS Solar Photovoltaic technical working group who have volunteered a great deal of their time attending meetings and undertaking additional work outside of those meetings. I would also like to thank those who responded to our consultation suggesting ideas for the Working Group to consider.

Chris Roberts Chair, MCS solar photovoltaic technical working group and Director of Poweri Services

Further Acknowledgements

MCS would like to acknowledge the work undertaken by the members of the MCS solar photovoltaic technical working group to develop this guide with particular thanks to the following organisations:

Sundog Energy Ltd.

and

GTEC Training Ltd.

Special thanks are also given to the leaders of the editorial team, Martin Cotterell and Griff Thomas.

Martin Cotterell

Martin Cotterell is one of the UK's foremost experts in the installation of solar PV systems and has played a central role in establishing and improving industry standards in the UK and internationally. Martin was a major author of both previous versions of this guide, has worked on grid connection standards for renewable generators and, as well as sitting on various MCS and other UK technical committees, he co-chairs the international IEC solar PV installation standards working group. Martin has considerable practical experience of PV system installation – he founded Sundog Energy in 1995, since when it has grown to be one of the UK's leading PV companies.

Griff Thomas

Griff Thomas has worked in the renewable technology sector for over 10 years. Formerly a mechanical and electrical contractor Griff brings a wealth of understanding as to how standards affect the everyday installation work of contractors. More recently Griff has worked in a number of roles across the industry on a variety of standards and technical documents. Griff also attends many technical committees in his role as the technical manager of ECA Certification for the Microgeneration Certification Scheme.

Particular thanks also goes to Steve Pester, Principal Consultant in BRE, for his work in developing the performance calculation methodology.

Guide to the Installation of Photovoltaic Systems

Contents

Contents	10
INTRODUCTION	13
Scope & Purpose	13
Layout of the Guide	13
Standards and Regulations	13
Safety	14
Parallel Generation	15
Ready Reference to the Guide	15
Definitions	20
DESIGN	24
Design Part 1 – d.c. System	24
PV Modules	24
d.c. System – Voltage and Current Ratings (minimum)	25
PV String & Array Voltages	26
d.c. Cables – General	26
String Cables	28
Main d.c. Cable	30
d.c. Plug and Socket Connectors	30
Other Inline Cable Junctions	32
PV Array d.c. Junction Box	32
String Fuses	33
Blocking Diodes	34
d.c. Isolation and Switching	35
Design Part 2 – Earthing, Protective Equipotential Bonding and Lightning Protection	38
Lightning Protection	38
Earthing	38
Protective Equipotential Bonding	39
Determining an Extraneous-Conductive-Part	41
System Earthing (d.c. Conductor Earthing)	41
Systems with High Impedance Connection to Earth	42
Systems with Direct Connection to Earth	42
Surge Protection Measures	43

Design Part 3 – a.c. System		
a.c. Cabling	44	
RCD Protection	44	
a.c. Isolation and Switching	47	
Inverters	47	
a.c. Cable Protection	49	
Metering	49	
Design Part 4 – Design Approval	50	
DNO Approval (grid connected systems)	50	
Planning Permission	51	
Building Regulations	51	
SYSTEM PERFORMANCE		
Array Orientation and Inclination	55	
Shade Effects	55	
Geographical Location	55	
Temperature Effects	57	
Other Factors	57	
Daily and Annual Variation	57	
Photovoltaic Performance Estimation	58	
Site Evaluation	58	
Standard Estimation Method	59	
kWp of Array (kWp)	59	
Postcode Zone	59	
Orientation	62	
Inclination	62	
Shade Factor (SF)	62	
Documentation	66	
Additional Estimates	66	
INSTALLATION/SITEWORK	67	
General	67	
PV Specific Hazards	67	
d.c. Circuits - Installation	68	
Personnel	68	
Sequence of Works	68	
Live Working	69	
Shock Hazard (safe working practices)	69	
Array Mounting	70	
Load Calculations	70	
Fixing Calculations	71	

Building Structure Calculations			
PV Roofing and Cladding Works			
MCS Pitched Roof System Requirements			
Standing Seam and Other Metal Roofs			
SIGNS AND LABELS	76		
INSPECTION, TESTING AND COMMISSIONING REQUIREMENTS			
Inspection and Testing – a.c. Side			
Inspection and Testing – d.c. Side (PV Array)			
Engineering Recommendation (ER) G83 and G59 Requirements			
HANDOVER & DOCUMENTATION			
Annex A - Battery Systems			
A1 PV Array Charge Controller			
A2 Battery Over Current Protection			
A3 Battery Disconnection			
A4 Cables in Battery Systems	83		
A5 PV String Cable and Fuse Ratings	83		
A6 Battery Selection and Sizing			
A7 Battery Installation/Labelling	84		
Annex B - Simplified Method for Determining Peak Wind Loads	86		
Annex C – PV Array Test Report			
Annex C – Electrical Installation Certificate			
Annex C – Schedule of Inspections			
Annex C – Schedule of Test Results	94		
Annex D – Abbreviated KWh/kWp (Kk) Tables	95		
Further Reading	121		

1 INTRODUCTION

1.1 Scope & Purpose

The scope of this document is to provide solar PV system designers and installers with information to ensure that a grid-connected PV system meets current UK standards and best practice recommendations. It is primarily aimed at typical grid connected systems of up to 50kWp (total combined d.c. output). However most of what is contained here will also be applicable for larger systems. Systems that include a battery are addressed in Annex A.

This document has been written to be the technical standard to which MCS registered installation companies are expected to meet in order to gain and / or maintain their MCS certification. To this end this guide is quoted by the MCS Photovoltaic standard (MIS 3002).

1.2 Layout of the Guide

This guide is split into two main parts, the first detailing issues that need to be addressed during the design phase of a project, and the second covering installation and site based work. It is important to note, however, that many 'design' issues covered in the first section may have a significant impact on the practical installation process covered in the second.

1.3 Standards and Regulations

The following documents are of particular relevance for the design and installation of a PV system, where referenced throughout the guide the most recent edition should be referred to:

- Engineering Recommendation G83 (current edition) Recommendations for the connection of small scale embedded generators (up to 16A per phase) in parallel with public low voltage distribution networks
- Engineering Recommendation G59 (current edition) Recommendations for the connection of generating plant to the distribution systems of licensed distribution network operators.
- BS 7671 (current edition) Requirements for electrical installations (all parts but in particular Part 7-712 Requirements for special installations or locations – Solar photovoltaic (PV) power supply systems)
- BS EN 62446 (current edition) Grid connected photovoltaic systems Minimum requirements for system documentation, commissioning tests and inspection

1.4 Safety

From the outset, the designer and installer of a PV system must consider the potential hazards carefully, and systematically devise methods to minimise the risks. This will include both mitigating potential hazards present during and after the installation phase.

The long-term safety of the system can be achieved only by ensuring that the system and components are correctly designed and specified from the outset, followed by correct installation, operation and maintenance of the system. Consideration of operation under both normal and fault conditions is essential in the design stage to ensure the required level of safety. This aspect is covered in the DESIGN section of this guide.

It is then important to ensure that the long-term safety of the system is not compromised by a poor installation or subsequent poor maintenance. Much of this comes down to the quality of the installation and system inspection and testing regime. This is covered in the installation section of this guide.

Similarly, much can be done during the planning and design stage to ensure that the installation is safe for the installers. In some circumstances the application of the CDM regulations will be required. All key safety issues affecting the design and installation process are discussed in the guide. The main safety issues are:

- The supply from PV modules cannot be switched off, so special precautions should be made to ensure that live parts are either not accessible or cannot be touched during installation, use and maintenance.
- PV modules are current-limiting devices, which require a non-standard approach when designing fault protection systems, as fuses are not likely to operate under short-circuit conditions.
- PV systems include d.c. wiring, with which few electrical installers are familiar.
- The installation of PV systems presents a unique combination of hazards due to risk of electric shock, falling and simultaneous manual handling difficulty. All of these hazards are encountered as a matter of course on a building site, but rarely all at once. While roofers may be accustomed to minimising risks of falling or injury due to manual handling problems, they may not be used to dealing with the risk of electric shock. Similarly, electricians would be familiar with electric shock hazards but not with handling large objects at heights.

1.5 Parallel Generation

A mains-connected PV installation generates electricity synchronised with the electricity supply. Installers are obliged to liaise with the relevant Distribution Network Operator (DNO) in the following manner:

Single installation covered by G83

• Notification to DNO must be completed within 28 days of commissioning.

Multiple installations covered by G83 or installations in close geographical proximity to one another

- Application to proceed prior to commencing works (G83 multiple system application form)
- On commissioning notification and commissioning form as per single installation

Larger installations covered by G59

- Written approval from DNO to be gained prior to works commencing
- Commissioning process as required by DNO

As stated above, consideration needs to be given to the number of small scale embedded generators (SSEG's) in a close geographical area; this is defined in G83 and associated guidance documents. Where this is the case then the DNO should be consulted and the procedure for connecting multiple installations under G83 may need to be applied.

For more information see section 2.4.1

1.6 Ready Reference to the Guide

Example schematics for the two main types of system are shown in the following 2 figures to help when reading this Guide. They should not be used for a particular installation without taking into account the special circumstances of each individual installation.

Example Single Phase Layout:

Example Three Phase Layout:

Fig 2

- Three inverters (split across three-phase supply)
- Connected via G59/1 relay protection to 3 phase MCB in main distribution unit

1.7 Definitions

a.c. Side

Part of a PV installation from the a.c. terminals of the PV inverter to the point of connection of the PV supply cable to the electrical installation

d.c. Side

Part of a PV installation from a PV cell to the d.c. terminals of the PV inverter

Distribution Network Operator (DNO)

The organisation that owns or operates a Distribution Network and is responsible for confirming requirements for the connection of generating units to that Network

Earthing

Connection of the exposed-conductive-parts of an installation to the main earthing terminal of that installation

Electricity Network

An electrical system supplied by one or more sources of voltage and comprising all the conductors and other electrical and associated equipment used to conduct electricity for the purposes of conveying energy to one or more Customer's installations, street electrical fixtures, or other Networks

Equipotential Zone

Where exposed-conductive parts and extraneous-conductive parts are maintained at substantially the same voltage

Exposed-Conductive-Part

Conductive part of equipment which can be touched and which is not normally live, but which can become live when basic insulation fails

Extraneous-Conductive-Part

A conductive part liable to introduce a potential, generally Earth potential, and not forming part of the electrical system

Isc (stc) Short-Circuit Current

Short-circuit current of a PV module, PV string, PV array or PV generator under standard test conditions

Islanding

Any situation where a section of electricity Network, containing generation, becomes physically disconnected from the DNOs distribution Network or User's distribution Network; and one or more generators maintains a supply of electrical energy to that isolated Network

Isolating Transformer

Transformer where the input & output windings are electrically separated by double or reinforced insulation

Isolation

A function intended to cut off for reasons of safety the supply from all, or a discrete section, of the installation by separating the installation or section from every source of electrical energy

Isolator

A mechanical switching device which, in the open position, complies with the requirements specified for the isolating function. An isolator is otherwise known as a disconnector

Lightning Protection

A means of applying protective measures to afford protection to persons, property and livestock against the effects of a lightning strike

PME – Protective Multiple Earthing

An earthing arrangement, found in TN-C-S systems, in which the supply neutral conductor is used to connect the earthing conductor of an installation with Earth, in accordance with the Electrical Safety, Quality and Continuity Regulations 2002

Protective Equipotential Bonding - (also referred to as Equipotential Bonding)

Electrical connection maintaining various exposed-conductive-parts and extraneous-conductiveparts at substantially the same potential

PV a.c. Module

Integrated module/convertor assembly where the electrical interface terminals are a.c. only. No access is provided to the d.c. side

PV Array

Mechanically and electrically integrated assembly of PV modules, and other necessary components, to form a d.c. power supply unit

PV Array Cable

Output cable of a PV array

PV Array Junction Box

Enclosure where all PV strings of any PV array are electrically connected and where protection devices can be located

PV String

A number of PV modules are connected in series to generate the required output voltage

PV Cell

Basic PV device which can generate electricity when exposed to light such as solar radiation

PV Charge Controller

A device that provides the interface between the PV array and a battery

PV d.c. Main Cable

Cable connecting the PV array junction box to the d.c. terminals of the PV convertor

PV Grid-Connected System

A PV generator operating in 'parallel' with the existing electricity network

PV Installation

Erected equipment of a PV power supply system

PV Inverter (also known a PV Convertor)

Device which converts d.c. voltage and d.c. current into a.c. voltage and a.c. current

PV Kilowatts Peak (kWp)

Unit for defining the rating of a PV module where kWp = watts generated at stc

PV Module Maximum Series Fuse

A value provided by the module manufacturer on the module nameplate & datasheet (a requirement of IEC61730-2)

PV Module

Smallest completely environmentally protected assembly of interconnected PV cells

PV MPP Tracker (MPPT)

A component of the d.c. input side of an inverter designed to maximise the input from the array by tracking voltage and current

PV Self-Cleaning

The cleaning effect from rain, hail etc. on PV arrays which are sufficiently steeply inclined

PV String Cable

Cable connecting PV modules to form a PV string

PV String Fuse

A fuse for an individual PV string

PV Supply Cable

Cable connecting the AC terminals of the PV convertor to a distribution circuit of the electrical installation

PV Standard Test Conditions (stc)

Test conditions specified for PV cells and modules (25°C, light intensity 1000W/m², air mass 1.5)

V_{oc} Open circuit d.c. voltage

2 DESIGN

2.1 Design Part 1 – d.c. System

2.1.1 PV Modules

2.1.1.1 Standard Modules

Modules must comply with the following international standards:

- IEC 61215 in the case of crystalline types
- IEC 61646 in the case of thin film types
- IEC 61730 Photovoltaic (PV) module safety qualification
- Modules must also carry a CE mark

The use of Class II modules is generally recommended, and strongly recommended for array opencircuit voltages of greater than 120 V.

For an installation to comply with the requirements of MCS - modules must be certificated and listed on the MCS product database

2.1.1.2 Building Integrated Products / Modules

PV products shall be designed and constructed to meet the requirements within the relevant Building Regulations for the particular application that the PV product is intended. The PV installer must be able to demonstrate such compliance for all relevant projects. MCS012 or MCS017 (as relevant) may assist in demonstrating such compliance.

For an installation to comply with the requirements of MCS - PV systems mounted above or integrated into a pitched roof shall utilise products that have been tested and approved to MCS012 (test procedures used to demonstrate the performance of solar systems under the action of wind loads, fire, rainfall and wind driven rain).

Note: Under the MCS scheme, MCS012 becomes compulsory in September 2013 and MCS 017 in May 2013

PV systems utilising bespoke building integrated PV modules should utilise products that have been tested and approved to MCS017 Product Certification Scheme Requirements: Bespoke Building Integrated Photovoltaic Products. The use of products listed to MCS012 or MCS017 is still recommended, even if MCS compliance is not required

Details of MCS approved system components can be found at: www.microgenerationcertification.org

2.1.2 d.c. System – Voltage and Current Ratings (Minimum)

All d.c. component ratings (cables, isolators / disconnectors, switches, connectors, etc.) of the system must be derived from the maximum voltage and current of the relevant part of the PV array adjusted in accordance with the safety factors as below. This must take into account system voltage/currents of the series/parallel connected modules making up the array. It must also take into account the maximum output of the individual modules.

When considering the voltage and current requirements of the d.c. system, the maximum values that could occur need to be assessed. The maximum values originate from two PV module ratings – the open-circuit voltage (V_{oc}) and the short-circuit current (I_{sc}) which are obtained from the module manufacturer. The values of V_{oc} and I_{sc} provided by the module manufacturer are those at standard test conditions (stc) – irradiance of 1000 W/m2, air mass 1.5 and cell temperature of 25°C. Operation of a module outside of standard test conditions can considerably affect the values of V_{oc} (stc), I_{sc} (stc). In the field, irradiance and particularly temperature can vary considerably from stc values. The following multiplication factors allow for the maximum values that may be experienced under UK conditions.

Mono- and multi-crystalline silicon modules - All d.c. components must be rated, as a minimum, at:

- Voltage: V_{oc}(stc) x 1.15
- Current: I_{sc}(stc) x 1.25

All other module types - All d.c. components must be rated, as a minimum, from:

- Specific calculations of worst case V_{oc} and $I_{sc'}$ calculated from manufacturer's data for a temperature range of -15°C to 80°C and irradiance up to 1,250 W/m²
- A calculation of any increase in V_{oc} or I_{sc} over the initial period of operation. This increase is to be applied in addition to that calculated above.

Note: Some types of PV modules have temperature coefficients considerably different to those of standard mono- and multi-crystalline modules. The effects of increased irradiance may also be more pronounced. In such cases the multiplication factors used for crystalline silicon modules may not cover the possible increase in voltage/current. In addition, some thin film modules have an electrical output that is considerably higher during the first weeks of exposure to sunlight.

This increase is on top of that produced by temperature/irradiance variation. Typically, operation during this period will take $V_{oc'}$, I_{sc} (and nominal power output) well above any value calculated using a standard multiplication factor. To avoid oversizing the inverter for this eventuality the array could be left disconnected for that initial period, refer to the manufacturer for this information.

2.1.3 PV String & Array Voltages

It is always desirable to keep voltages low to minimise associated risks, however in many systems, the d.c. voltage will exceed levels that are considered to reduce the risk to a minimum (usually around 120V d.c.)

Where this is the case, double insulation is usually applied as the method of shock protection. In this instance the use of suitably rated cables, connectors and enclosures along with controlled installation techniques becomes fundamentally important to providing this protective measure as defined in BS 7671- Section 412. Similarly, double insulation of the d.c. circuit greatly minimises the risk of creating accidental shock current paths and the risk of fire.

Where the PV array voltage exceeds 120V:

Double insulation (insulation comprising both basic & supplementary insulation) or reinforced insulation, appropriate barriers and separation of parts must be applied to all parts of the d.c. circuit to facilitate a level of protection equivalent to the protective measure "double or reinforced insulation" as defined in BS 7671- Section 412.

Where the PV array open circuit voltage exceeds 1000V:

Due to the added complexities and dangers associated with systems of a higher voltage than normal, the PV array should not be installed on a building. In addition, access should be restricted to only competent, skilled or instructed persons.

2.1.4 d.c. Cables - General

2.1.4.1 Cable Sizing

Cables should be sized in accordance with BS 7671. These calculations shall also take into account the multiplication factors in 2.1.2 of this guide. Guidance on a method of cable sizing including any de-rating factor requiring to be applied and typical current carrying capacities for common cable types are provided in Appendix 4 of BS 7671.

Cables should be sized such that the overall voltage drop, at array maximum operating power (stc), between the array and the inverter is <3%.

2.1.4.2 Cable Type and Installation Method

To minimise the risk of faults, PV d.c. cable runs should be kept as short as practicable. Note: See also section 2.1.12 (additional d.c. switches for long cable runs).

The cables used for wiring the d.c. section of a grid-connected PV system need to be selected to ensure that they can withstand the extremes of the environmental, voltage and current conditions, under which they may be expected to operate. This will include heating effects of both the current and solar gain, especially where installed in close proximity to the PV modules.

Purpose designed "PV cables" are readily available and it is expected that all installations would use such cables. An IEC PV cable standard is under development and it is expected cables in compliance with this standard will be required once it is issued. In the interim, it is recommended that cables should comply with UL 4703, or TUV 2 Pfg 1169 08.2007.

Cables routed behind a PV array must be rated for a temperature range of at least of -15°C to 80°C.

Cables must be selected and installed so as to minimise the risk of earth faults and short-circuits. This can be achieved by reinforcing the protection of the wiring either through:

a) Single conductor "double insulated" cable

 b) Single conductor cable suitably mechanically protected conduit/trunking. Alternatively a single core SWA cable may be a suitable mechanically robust solution. Fig 3a

c) Multi core Steel Wire Armoured SWA. Typically only suitable for main d.c. cable between a PV array junction box and inverter position, due to termination difficulties between SWA and the plug and socket arrangements pre-fitted to modules.

External cables should be UV stable and water resistant. Where cables are likely to be subjected external movement, i.e. those mounted immediately behind the array, it is recommended that they be flexible (multi-stranded) to allow for thermal/wind movement of arrays/modules.

Because PV array cables almost exclusively rely on double or reinforced insulation as their means of shock protection they should not be buried in walls or otherwise hidden in the building structure as mechanical damage would be very difficult to detect and may lead to increase instances of shock and fire risk.

Where this cannot be avoided conductors should be suitably protected from mechanical damage, suitable methods may include the use of metallic trunking or conduit or the use of steel wire armoured cable in accordance with BS 7671.

Exterior cable colour coding is not required for PV systems. Consideration must be given to the UV resistance of all cables installed outside or in a location that may be subject to UV exposure, PV cables are therefore commonly black in colour to assist in UV resistance.

Where long cable runs are necessary (e.g. over 20m), labels should be fixed along the d.c. cables as follows:

Labelling fixed every 5 to 10m is considered sufficient to identify the cable on straight runs where a clear view is possible between labels.

Where multiple PV sub-arrays and or string conductors enter a junction box they should be grouped or identified in pairs so that positive and negative conductors of the same circuit may easily be clearly distinguished from other pairs.

2.1.5 String Cables

In a PV array formed from a number of strings, fault conditions can give rise to fault currents flowing though parts of the d.c. system. Two key problems need addressing – overloaded string cables and excessive module reverse currents, both of which can present a considerable fire risk.

For small systems where it is determined that string fuses are not required for module protection (maximum reverse currents less than module reverse current rating), a common approach is to ensure that the string cables are suitably rated such that they may safely carry the maximum possible fault current.

This method relies on oversizing the string cables such that any fault current can be safely accommodated. Such a method does not clear the fault but simply prevents a fire risk from

overloaded cables. See also section 2.1.10 - string fuses. For an array of N parallel connected strings, with each string formed of M series connected modules:

String cables must be rated as a minimum as follows:

- Voltage > V_{oc}(stc) x M x 1.15
- Current > I_{sc}(stc) x (N-1) x 1.25
- The cable Current Carrying Capacity (I_z) must be calculated according to the requirements of BS 7671. This shall include factors taking into account installation conditions such as cable installation method, solar gains and grouping etc.

Where a system includes string fuses, the cable size may be reduced, but in all cases the I_2 after de-rating factors have been applied must exceed the string fuse rating and must exceed the I_2 (stc) x 1.25.

2.1.6 Main d.c. Cable

For a system of N parallel connected strings, with each formed of M series connected modules:

d.c. main cables must be rated as a minimum as follows:

- Voltage: V_{oc}(stc) x M x 1.15
- Current: I_{sc}(stc) x N x 1.25

The cable Current Carrying Capacity (I_z) must be calculated according to the requirements of BS 7671 to include cable de-rating factors to take into account factors such as cable installation method and grouping

2.1.7 d.c. Plug and Socket Connectors

PV specific plug and socket connectors are commonly fitted to module cables by the manufacturer. Such connectors provide a secure, durable and effective electrical contact. They also simplify and increase the safety of installation works.

Plugs and socket connectors mated together in a PV system shall be of the same type from the same manufacturer and shall comply with the requirements of BS EN 50521. Different brands may only be interconnected where a test report has been provided confirming compatibility of the two types to the requirements of BS EN 50521.

Connectors used in a PV string circuit must comply with the minimum voltage and current ratings as detailed in string cable section above (section 2.1.5). Connectors used in a d.c. main cable circuit must comply with the minimum voltage and current ratings as detailed in the main d.c. cable section above (section 2.1.6)

Connectors should have a UV, IP and temperature rating suitable for their intended location and should be compatible with the cable to which they are connected.

Connectors readily accessible to ordinary persons shall be of the locking type, requiring a tool or two separate actions to separate and shall have sign attached that reads: 'Do not disconnect d.c. plugs

and sockets under load'

Cable connectors must not be used as the means for d.c. switching or isolation under load (see 2.1.12) as d.c. arcing can cause permanent damage to some connectors.

Plug and socket "Y" connectors can also be used to replace a junction box. It is good practice to keep "Y" connectors in accessible locations and where possible note their location on layout drawings, to ease troubleshooting in future.

Where required by the connectors special tooling shall be used to ensure that connections are adequately made off and secure. Failure to use the correct tooling will result in connections that are not mechanically or electrically sound and can lead to overheating and fires.

Example tooling required for correct termination of connectors

2.1.8 Other Inline Cable Junctions

In general cable junctions shall either be by an approved plug and socket connector or contained within a d.c. Junction Box (see below). However in certain limited circumstances it may be necessary for an in-line cable junction to be made (e.g. soldered extension to a module flying lead) although this should be avoided if at all possible.

Note: Great care needs to be applied in the design and installation of in-line junctions. Where unavoidable, such junctions need to maintain the 'double or reinforced insulated' nature of the cables as described in section 2.1.4 (e.g. by the use of two layers of appropriately rated adhesive lined heat shrink sleeving), and be provided with appropriate strain relief. Such junctions would typically be completed off-site, prior to works, using fittings and tools appropriate to the cable to be jointed.

2.1.9 PV Array d.c. Junction Box

If there is more than one string, the d.c. junction box (sometimes called a combiner box) is normally the point at which they are connected together in parallel. The box may also contain string fuses and test points.

The d.c. junction box must be labelled with - 'PV array d.c. junction box, Danger contains live parts during daylight'.

All labels must be clear, legible, located so as to be easily visible, durably constructed and affixed to last lifetime of the installation.

Note: A PV system cannot be turned off – terminals will remain live at all times during daylight hours. It is important to ensure that anyone opening an enclosure is fully aware of this.

The short-circuit protection afforded by the cable installation throughout the rest of the d.c. circuit needs to be maintained in the construction and makeup of the d.c. junction box. (See IEC 60536 and IEC 61140).

It is recommended that short-circuit protection shall be achieved by:

- Fabrication of the enclosure from non-conductive material
- Positive and negative busbars and terminals adequately separated and segregated within the enclosure and/or by a suitably sized insulating plate, or separate positive and negative junction boxes.
- Cable and terminal layout such that short-circuits during installation and subsequent maintenance are extremely unlikely.

2.1.10 String Fuses

The short circuit current of a module is little more than the operating current, so in a single string system, a circuit fuse would simply not detect or operate to clear a short circuit fault.

In systems with multiple strings some fault scenarios can result in the current from several adjacent strings flowing through a single string and the prospective fault current may be such that overcurrent protective devices are required. Hence, the selection of overcurrent protective measures depends upon the system design and the number of strings.

While string cable sizes can be increased as the number of parallel connected strings (and the potential fault current) increases, the ability of a module to withstand the reverse current must also be considered.

Where currents exceed the modules' maximum reverse current rating, there is the potential for damage to the affected modules' and also a fire risk. IEC61730-2 Photovoltaic (PV) module safety qualification – Part 2: Requirements for testing [5], includes a reverse current overload test. This reverse current test is part of the process that enables the manufacturer to provide the maximum overcurrent protection rating or maximum series fuse. Fault currents above the maximum series fuse rating present a safety risk and must be addressed within the system design.

For a system of N parallel connected strings, the maximum module reverse current $(I_{_R})$ to be experienced under fault conditions is:

$I_{R} = (N - 1) \times I_{sc}$

Hence, overcurrent protection is required where $(N - 1) \times I_{sc}$ is greater than the module maximum series fuse rating. While some fault combinations are less likely than others, in order to provide full protection of all cables and modules – string fuses are required in both the positive and negative legs of the string cabling.

Note: For small systems where it is determined that fault currents do not present a risk to the modules, only the string cables & connectors need to be considered. A common approach in this case relies on oversizing string cables & connectors - such that they may safely carry the maximum possible fault current. Such a method does not clear the fault but simply prevents a fire risk from overloaded cables. See also section 2.1.5 - string cables

Where the inverter is of such a design that it has multiple MPPT inputs and the design does not allow fault currents to flow between these inputs, each MPPT input may be treated as a wholly separate sub-array for the purposes of deciding whether string fuses are required.

Fuses should not be mounted in such a position where their rating may be compromised by the build-up of heat from solar gains. The use of MCBs (miniature circuit breakers) is permissible provided they meet the string fuse criteria and are rated for use in an inductive circuit and will operate for currents flowing in either direction through the device. A system fitted with suitable removable string fuses provides a means to achieve the requirements for string isolation (section 2.1.12.1)

2.1.10.1 String Fuse Selection

The following requirements apply where the PV array provides the only source of fault current, such as in a typical grid connected system with no battery. For a system with a battery or other source of fault current see also Section 2.5.

For a system of N parallel connected strings, with each formed of M series connected modules:

- String fuses must be provided for all arrays where: $(N 1) \times I_{sc} > module maximum series fuse rating$
- Where fitted, fuses must be installed in both positive and negative string cables for all strings.
- The string fuse must be of a type gPV according to IEC60269-6
- The string fuse must be rated for operation at V_{cc}(stc) x M x 1.15
- The string fuse must be selected with an operating current In such that:

 $i_n > 1.5 \text{ x } I_s \text{ sc} \text{ stc}$ $i_n \le 2.4 \text{ x } I_s \text{ sc} \text{ stc}$

 $i_n \leq 1$ Maximum series fuse value

2.1.11 Blocking Diodes

Blocking diodes are not commonly used in a gridconnect system as their function is better served by the installation of a string fuse. However, for multi-string arrays with some types of PV module, particularly thin-film types, it may not be possible to provide adequate overcurrent / reverse current protection with string fuses or MCBs alone.

This is due to the fact it may not be possible to specify a fuse/MCB which is greater than Isc x 1.25 but less than the reverse current rating of the module. In this situation blocking diodes should be used in addition to string fuses.

It is to be noted that:

- The installation of a blocking diode results in a small voltage drop across the diode
- Blocking diodes may fail as a short-circuit and therefore require regular testing.

Fig 9

In most cases the specification of string fuses can provide sufficient reverse current protection without the problems and power losses associated with a blocking diode. If blocking diodes are used, they should be supplemented by string fuses.

If specified, a blocking diode must have:

- A reverse voltage rating > 2 x maximum system voltage (as calculated in section 2.1.2)
- A current rating > 1.4 x lsc (where lsc is the relevant short circuit current for the string / sub array / array)
- Have adequate cooling (heatsinks) if required

Note that blocking diodes should not be confused with bypass diodes. Bypass diodes are normally encapsulated into the module junction box at the back of the PV module and are intended to allow current(s) to bypass cells and / or modules that have a high resistance (usually caused by shading).

2.1.12 d.c. Isolation and Switching

The following table describes the requirements for both isolation and switching in the d.c. side of the PV array circuit:

d.c. Circuit	Switching	Isolation
String	Not required	Readily accessible means of string isolation
Sub array	Optional	Readily accessible means of Sub Array isolation
Array	Readily accessible load break switch disconnector on d.c. side of inverter	

An additional d.c. switch or isolating device may be specified for systems with long d.c. cable runs (typically at the point of cable entry into the building) – so as to provide a means of isolating the cable for safety reasons or maintenance works.

2.1.12.1 Isolation

Isolation is defined as a function intended to cut off for reasons of safety the supply from all, or a discrete section, of the installation by separating the installation or section from every source of electrical energy (from BS 7671).

Isolation shall be provided in both positive and negative cables and all isolation measures shall be readily accessible

String isolation – This can be achieved by any suitable means such as appropriately located plug and socket connectors or removable string fuses.

Sub array isolation – This can be achieved by any suitable means such as a removable sub array fuse or by the use of a switch disconnector.

Array isolation - This shall be provided by the Array Switch Disconnector (see next page)

2.1.12.2 Switch Disconnector – General Requirements

A switch disconnector installed on the d.c. side shall have the following features:

- The switch must isolate all live conductors (typically double pole to isolate PV array positive and negative conductors)
- The switch must be rated for d.c. operation at the system voltage maximum as calculated
- The switch must be rated for d.c. operation at the system current maximum as calculated
- The switch must be labelled as 'PV array d.c. isolator', with the ON and OFF positions clearly marked. Switch enclosures should also be labelled with 'Danger contains live parts during daylight'. All labels must be clear, easily visible, constructed and affixed to last and remain legible for as long as the enclosure.

NOTE: A circuit breaker may also be used provided it meets all the above requirements

2.1.12.3 Array Switch Disconnector

As noted in section 2.1.12, a readily accessible load break switch disconnector on d.c. side of inverter must be provided. This array switch disconnector shall be one of the following:

- A physically separate switch-disconnector mounted adjacent to the inverter; or
- A switch-disconnector that is mechanically connected to the inverter that allows the inverter to be removed from the section containing the switch-disconnector without risk of electrical hazards; or
- A switch-disconnector integral to the inverter, if the inverter includes a means of isolation only operable when the switch-disconnector is in the open position (e.g. plugs only accessible once the switch disconnector handle is removed); or
- A switch-disconnector integral to the inverter, if the inverter includes a means of isolation (e.g. plugs) which can only be operated with a tool and is labelled with a readily visible warning sign or text indicating ("Do not disconnect under load").
2.1.12.4 a.c. Module Systems

Where inverters are of the type that mounts directly or adjacent to PV modules, BS 7671 regulation 712.537.2.2.5 would still require the fitting of a switch disconnector.

However it is considered that from a practical perspective a d.c. isolator may not always be necessary where the system fulfils all of the following requirements:

- Connects only one module per inverter
- Does not require the extension of the PV module d.c. cables beyond the length of the original factory fitted cables
- Does not exceed the voltages within the band of ELV (Not exceeding 50 V a.c. or 120 V ripple-free d.c. whether between conductors or to Earth.)
- Has a plug and socket type connector arrangement for the d.c. cables

In this case, the designer of the installation must carefully consider the layout of such a system and if it is decided to omit the switch disconnector this shall be recorded as a departure on the Electrical installation certificate.

NOTE: At the time of going to press comments have been submitted to the relevant UK panel to review the requirements of 712.537.2.2.5 in relation to such inverters.

2.2 Design Part 2 – Earthing, Protective Equipotential Bonding and Lightning Protection

2.2.1 Lightning Protection

Whilst this installation guide does not cover specific guidance on selection, or application of lightning protection, it was felt that a brief overview was required as given below. Where further information is required, this can be referenced from BS EN 62305.

In most cases the ceraunic value (number of thunderstorm days per year for a given installation location in the UK) does not reach a level at which particular protective measures need to be applied. However where buildings or structures are considered to be at greater risk, for example very tall, or in an exposed location, the designer of the a.c. electrical system may have chosen to design or apply protective measures such as installation of conductive air rods or tapes.

If the building or dwelling is fitted with a lightning protection system (LPS), a suitably qualified person should be consulted as to whether, in this particular case, the array frame should be connected to the LPS, and if so what size conductor should be used.

Where an LPS is fitted, PV system components should be mounted away from lightning rods and associated conductors (see BS EN 62305). For example, an inverter should not be mounted on an inside wall that has a lightning protection system down conductor running just the other side of the brickwork on the outside of the building.

Where there is a perceived increase in risk of direct lightning strike as a consequence of the installation of the PV system, specialists in lightning protection should be consulted with a view to installing a separate lightning protection system in accordance with BS EN 62305.

Note: It is generally accepted that the installation of a typical roof-mounted PV system presents a very small increased risk of a direct lightning strike. However, this may not necessarily be the case where the PV system is particularly large, where the PV system is installed on the top of a tall building, where the PV system becomes the tallest structure in the vicinity, or where the PV system is installed in an open area such as a field.

2.2.2 Earthing

Earthing is a means of connecting the exposed conductive parts to the main earthing terminal, typically this definition means the connection of metallic casings of fixtures and fittings to the main earthing terminal via a circuit protective conductor (cpc).

Importantly, it must be noted that we only make this connection when the accessory or appliance requires it. This connection is required when it is considered to be a class I appliance or accessory and is reliant on a connection with earth for safety using 'automatic disconnection of supply' (ADS) as the fault protective measure.

As the d.c. side of PV systems is a current limiting generating set, the protective measure ADS is almost never used and is outside of the scope of this guidance. In these circumstances, where the d.c. side of the installation is constructed to meet the requirements of an installation using double or reinforced insulation, no connection to earth between the PV Modules or frame and main earthing terminal would be required.

Earthing of the inverter at the a.c. terminations will still be necessary where the inverter is a Class I piece of equipment and must be applied where necessary. Where class I inverters are used externally (ie field mount systems) careful consideration must be given to the requirements for earthing.

2.2.3 Protective Equipotential Bonding

Protective equipotential bonding is a measure applied to parts of the electrical installation which, under fault conditions may otherwise have a different potential to earth. By applying this measure the risk of electric shock is limited as there should be little or no difference in voltages (potential difference) between the parts that may otherwise become live. These parts are categorised as either Exposed-Conductive-Parts or Extraneous-Conductive-Parts

In most PV systems there are no parts that are considered to be an exposed-conductive-part or extraneous-conductive-part, therefore protective equipotential bonding is not usually required. For guidance on when to consider protective equipotential bonding please see the decision tree on the next page.

On the d.c. side of the PV installation the designer will have usually already selected double or reinforced insulation as the protective measure and therefore the component parts of the installation will be isolated and will not require protective equipotential bonding.

Earthing and or Bonding Decision Tree:

Fig 10

2.2.4 Determining an Extraneous-Conductive-Part

The frame of the array has to be assessed as to whether it is likely to introduce a potential into the installation. This aim of this assessment is to find out if the frame has any direct contact with ground that would make it introduce a potential.

The details on carrying out these tests are best given in the IET BS 7671 Guidance Note 8 Earthing & Bonding and this should be referred to before undertaking a test. The principle behind the test is to ascertain whether or not there is a low enough conductivity between the part under test and the Main earthing terminal (MET) to say that it could introduce an earth potential.

To find this out a resistance test should be carried out between the part in question (the array frame) and the MET of the building. Where the value recorded is greater than $22k\Omega$ (most cases) the part can be considered to be isolated from earth and NOT an extraneous conductive part. If however the reading is less than $22k\Omega$, then the part is considered to be extraneous and protective equipotential bonding, as required by BS 7671, should be applied.

Where the array frame is mounted on a domestic roof or similar, the likelihood of the frame being an extraneous-conductive-part is very low - due to the type and amount of material used between the ground and the roof structure (which will mainly be non-conductive). Even in the case of an array frame being mounted on a commercial building where mostly steelwork is used, it is likely that the frame will be either isolated, and therefore not required to be bonded, or will be bolted to the framework or steelwork of the building which will often be sufficient to maintain bonding continuity and a sufficiently low enough resistance to consider it to be bonded through the structure itself.

Careful consideration needs to be given to systems that are ground mounted as they may initially appear to be an extraneous-conductive-part. However, as they are usually a good distance away from the earthed equipotential zone, by bonding them you may well be introducing a shock risk that wasn't there initially, and in the case of an installation supplied by a TN-C-S (PME) supply you may be contravening the supply authority's regulations (ESCQR 2002). In most cases these installations wouldn't require bonding – in such cases the designer must make an informed decision based on the electrical design of the entire installation, not just the PV system in isolation.

2.2.5 System Earthing (d.c. Conductor Earthing)

There are a variety of possible PV array system d.c. earthing scenarios which can be broadly summarised as follows:

- No earth connection
- · Hardwired connection of positive or negative conductor to earth
- Centre tapped array with / without earth connection
- High impedance connection of positive or negative conductor to earth (for functional reasons)

The manufacturer's instructions for both the PV modules and the equipment to which the PV array is connected must be taken into account in determining the most appropriate earthing arrangement.

A connection to earth of any of the current carrying d.c. conductors is not recommended. However, earthing of one of the live conductors of the d.c. side is permitted, if there is at least simple separation between the a.c. and the d.c. side. Where a functional earth is required, it is preferable that where possible this be done through high impedance (rather than directly).

The designer must confirm whether the inverter is suitable for earthing of a d.c. conductor. Transformerless inverters will not be suitable, and an earthed conductor may interfere with the inverter's built-in d.c. insulation monitoring. Hence, if an earthed d.c. conductor is required, this is ideally done in the inverter in accordance with guidance from the inverter manufacturer.

NOTE: In the case of PV systems connected to an inverter, IEC62109-2 (Safety of Power convertors for use in photovoltaic power systems – Part 2: Particular requirements for inverters), includes requirements according to the type of earthing arrangement (and inverter topology). These include minimum inverter isolation requirements, array ground insulation resistance measurement requirements and array residual current detection and earth fault alarm requirements.

2.2.5.1 Systems with High Impedance Connection to Earth

A high impedance connection to earth of one of the current carrying conductors may be specified where the earth connection is required for functional reasons. The high impedance connection fulfils the functional requirements while limiting fault currents.

Where a functional earth is required, it is preferred practice that systems be functionally earthed through high impedance rather than a direct low impedance connection (where possible).

2.2.5.2 Systems with Direct Connection to Earth

Where there is a hardwired connection to earth, there is the potential for significant fault currents to flow if an earth fault occurs somewhere in the system. A ground fault (earth fault) interrupter and alarm system can interrupt the fault current and signal that there has been a problem. The interrupter (such as a fuse) is installed in series with the ground connection and selected according to array size. It is important that the alarm is sufficient to initiate action, as any such earth fault needs to be immediately investigated and action taken to correct the cause.

An earth fault interrupter shall be installed in series with the earth connection of the PV array such that if an earth fault occurs the fault current is interrupted. When the earth fault interrupter operates, an alarm shall be initiated. The nominal overcurrent rating of the interrupter shall be as follows:

Array size	Overcurrent rating
≤3kWp	≤1A
3- 100KWp	≤3A
>100kWp	≤5A

The earth fault alarm shall be of a form that ensures that the system operator or owner of the system becomes immediately aware of the fault. For example, the alarm system may be a visible or audible signal placed in an area where operational staff or system owners will be aware of the signal or another form of fault communication like Email, SMS or similar

NOTE: In grid connected systems, an earth fault alarm may be a feature of the inverter. In such systems and where the inverter is located in a remote location, the system should be configured so that a secondary alarm is triggered that will be immediately seen by the system operator. For systems in accordance with BS 7671 conductors used for earth fault detection are usually cream in colour.

2.2.6 Surge Protection Measures

All d.c. cables should be installed to provide as short runs as possible and positive and negative cables of the same string or main d.c. supply should be installed together, avoiding the creation of loops in the system. This requirement includes any associated earth/bonding conductors.

Long cables (e.g. PV main d.c. cables over about 50 m) should be installed in earthed metal conduit or trunking, or be screened cables such as armoured.

Note: These measures will act to both shield the cables from inductive surges and, by increasing inductance, attenuate surge transmission. Be aware of the need to allow any water or condensation that may accumulate in the conduit or trunking to escape through properly designed and installed vents.

Most grid connect inverters have some form of in-built surge suppression; however discrete devices may also be specified.

Note: Surge protection devices built into an inverter may only be type D and a designer may wish to add additional (type B or C) devices on the d.c. or a.c. side. To protect the a.c. system, surge suppression devices may be fitted at the main incoming point of a.c. supply (at the consumer's cutout). To protect the d.c. system, surge suppression devices can be fitted at the inverter end of the d.c. cabling and at the array. To protect specific equipment, surge suppression devices may be fitted as close as is practical to the device.

2.3 Design Part 3 – a.c. System

2.3.1 a.c. Cabling

The PV system inverter(s) should be installed on a dedicated final circuit to the requirements of BS 7671 in which:

- No current-using equipment is connected, and
- No provision is made for the connection of current-using equipment, and
- No socket-outlets are permitted.

Note: For the purposes of this guide a datalogger is not considered current-using equipment and can be connected into the same final circuit as the PV system.

Where a single circuit feeds more than one inverter, the protective device for that circuit shall be less than the maximum MCB rating recommended by the inverter manufacturer(s). An inverter must not be connected by means of a plug with contacts which may be live when exposed and a.c. cables are to be specified and installed in accordance with BS 7671.

The a.c. cable connecting the inverter(s) to the consumer unit should be sized to minimise voltage drop. A 1% drop or less is recommended. However in larger installations this may not be practicable or economic due to the very large size of cable resulting. In this case the designer should minimise voltage drop as far as possible and must remain within voltage drop limits as prescribed by BS 7671.

Note: The recommendation for a 1% voltage drop is due to two reasons: firstly when generating, the voltage at the inverter terminals is higher than the voltage at the supplier's cutout – during periods of high power output this voltage drop must be kept to a minimum in order to prevent the inverter nuisance tripping on over voltage ; secondly the requirement ensures losses from the PV system are minimised.

2.3.2 RCD Protection

Where an electrical installation includes a PV power supply system that cannot prevent d.c. fault currents from entering the a.c. side of the installation, and where an RCD is needed to satisfy the general requirements of the electrical installation in accordance with BS 7671, then the selected RCD should be a Type B RCCB as defined in IEC 62423. Where any doubt exists about the capability of the inverter to prevent d.c. fault currents entering the a.c. side of the system then the manufacturer shall be consulted.

Types of RCD

The selection of RCD's in respect of load d.c. components is an issue that is often overlooked by designers. RCD's are classified according to their response to d.c.signals as follows:

- **Type A.C.** This class of device generally only detect sinusoidal alternating residual currents. They may not detect non-sinusoidal, non-alternating residual components. These non-sinusoidal currents are present in many items of equipment for example, virtually all equipment with a switched mode power supply will have a d.c. component.
- **Type A** This class of device will detect residual current of both a.c. and pulsating d.c. and are known as a d.c. sensitive RCD's. They cannot be used on steady d.c. loads.
- Type B This type will detect a.c., pulsating d.c. and steady d.c. residual currents.

RCD's are required to be marked with their type and the following table shows the markings and provides selection criteria.

The following decision tree can be used to determine the correct selection of the type of RCD in accordance with Regulation 712.411.3.2.1.2 of BS 7671.

RCD Decision Tree:

2.3.3 a.c. Isolation and Switching

To comply with the requirements of Engineering Recommendations G83 / G59:

The PV system shall be connected to an isolation switch that fulfils the following conditions:

- Isolates line and neutral conductors
- Be securable in the OFF position
- Located in an accessible location

This switch shall clearly show the ON and OFF positions and be labelled as 'PV system – main a.c. isolator'

Isolation and Switching of the a.c. side of the installation shall also comply with the requirements of BS 7671. This is to include the provision of an isolator adjacent to the inverter to disconnect the inverter from the source of supply (AC).

In its simplest form, for a single phase inverter, an unswitched fused connection unit mounted adjacent to the inverter may be used to fulfil this requirement, see figures 1 and 2 for a typical layout. It is however suggested that for the purposes of routine maintenance a switched fused connection unit offers a better degree of control and therefore should be used as a minimum.

Note: At the point of installation of any a.c. switch-disconnector, the public supply should be considered the source and the PV installation the load.

2.3.4 Inverters

Inverters must carry a Type Test certificate to the requirements of Engineering Recommendation G83 or G59 (as applicable – see section 2.4.1) unless specifically agreed by an engineer employed by or appointed by the DNO for this purpose, and in writing.

Note: A key safety consideration is that the PV system will disconnect when the distribution system is not energised. This is to prevent the hazardous situation of the photovoltaic system feeding the network or local distribution system during a planned or unscheduled loss of mains. Such an event is termed 'islanding' and presents a potential danger to those working on the network/distribution system. Engineering recommendations G83 and G59 ensure that a PV system is properly prevented from such islanding operation. Other considerations addressed by these Engineering Recommendations include the prevention of harmonics, EMC compatibility and d.c. injection.

2.3.4.1 Inverter Sizing

The sizing of an inverter for a grid connected PV system is influenced by a number of factors, including:

- The inverters available for use in the UK (not all manufacturers have G83 / G59)
- Array voltage fluctuations due to operating temperature
- The maximum permissible d.c. input voltage of the inverter
- The MPP (maximum power point) voltage range of the inverter
- The desired inverter array power ratio

Inverter matching is to be done using the guidance from the inverter manufacturer – typically using the manufacturer's system sizing software.

Where a system features multiple strings/arrays with significantly different orientation or inclination, the strings or arrays should be connected to an inverter with a multiple MPPT function or separate inverters should be utilised. This is only required where the variations in orientation or inclination are such that connecting the strings/arrays to a single MPPT input may significantly reduce the overall performance of the system.

The inverter must be selected to safely withstand the maximum array voltage and current (as highlighted in section 2.1.2). This must include any initial overvoltage period which is a feature of some module types. This is to include verifying that the inverter can safely withstand the array open circuit voltage maximum at -15°C.

Temperature range - While an inverter must be able to safely withstand array operation between -15°C to 80°C (see section 2.1.2), it is permissible for a narrower temperature band (e.g. -10°c to

70°c) to be used when looking at the operational mpp range of the inverter. In such cases, an assessment should be made as to the temperature range acceptable and appropriate for that particular site and array mounting method (eg some building integrated systems will operate at higher temperatures than "ontop" systems)

Power ratio - It is common practice for an inverter power to be less than the PV array rating. In the UK, inverters are typically sized in the range of 100 - 80% of array capacity. However, in certain circumstances and depending on the inverter used, ratios outside this are sometimes utilised (NB: Inverter power is taken to be maximum steady state a.c. power output).

Inverter ventilation – Inverters generate heat and should be provided with sufficient ventilation. Clearance distances as

specified by the manufacturer (e.g to a heatsink) should also be observed. Inverter locations such as Plant or Boiler rooms, or roof spaces prone to high temperatures, should be carefully considered to avoid overheating.

Failure to follow this can cause a loss in system performance as the inverter will de-rate when it reaches its maximum operating temperature. This should be highlighted within the operation and use manual, left with the customer and ideally with a label – "not to block ventilation" – placed next to the inverter.

NOTE: It is recommended that Inverters carry a sign 'Inverter - isolate a.c. and d.c. before carrying out work'.

2.3.5 a.c. Cable Protection

Protection for the cable from the inverter(s) must be provided at the distribution board. This protective measure shall be specified and installed in accordance with the requirements of BS 7671.

In very many cases the current limiting nature of the PV array and inverter(s) omits the requirements for overload protection and therefore the designer only need to consider fault current protection.

The protection afforded at the origin of the circuit (the distribution board) in accordance with BS 7671, means there is no requirement for additional overcurrent protection to be installed at the inverter end of the a.c. installation.

2.3.6 Metering

Inverter output meter: As a minimum, metering at the inverter output should be installed to display/record energy delivered by the PV system (kWh). In addition it is highly recommended for instantaneous power output (kW) to be displayed.

This will not only add to customer satisfaction it should lead to more effective fault detection. An approved kWh meter as detailed in the "Metering Guidance" document issued by MCS, connected to measure generation, will be required to facilitate payments of any financial incentives (e.g. Feed in Tariff payments).

The meter should be located where the consumer can readily observe it.

Building Export meter: Although not directly part of the PV system, where required in order to enable payment on exported electricity, an approved kWh export meter with appropriate reading capabilities may be required.

The appropriate Energy Supplier should be contacted to find out any particular requirements and to arrange for its fitting.

2.4 Design Part 4 – Design Approval

2.4.1 DNO Approval (Grid Connected Systems)

Engineering Recommendations issued by the Electricity Network Association, govern key aspects concerning the grid interface of a solar PV system. Systems up to 16A, AC output per phase, come under Engineering Recommendation G83. This would correspond to 3.68kW single phase (230v Nominal) and 11.04kW three phase (400v nominal). Systems over 16A per phase come under Engineering Recommendation G59.

Installers are required to gain approval and inform the relevant distribution Network Operator (DNO) of the installation of a grid connected PV system in the following manner:

a) Single installation ≤ 16A/phase using G83 type tested inverter(s)

Notification using G83 commissioning form within 28 days following commissioning of the installation, to the DNO's designated contact details.

b) Multiple installations in close geographical proximity less than 16A/phase using G83 type tested inverter(s)

- > Application to connect submitted to DNO using G83 multiple system application form
- > Approval for connection to be received prior to installation.
- ≻Notification within 28 days of commissioning using G83 commissioning form

c) Systems up to 50kW (AC) 3-phase or 17kW single phase using G59 type approved inverters(s)

- > Application to connect submitted to DNO using G59 application form
- > Approval for connection to be received prior to installation
- Commissioning to be performed to the requirements of the DNO (witness testing not typically required)
- Notification within 28 days of commissioning using G59 Appendix A13.2 commissioning form

d) All other systems

- > Application to connect submitted to DNO using G59 application form
- > Approval for connection to be received prior to installation.
- >Additional interface protection measures to be approved by DNO
- Commissioning to be performed to the requirements of the DNO
- Notification within 28 days of commissioning using G59 Appendix A13.3 commissioning form

2.4.2 Planning Permission

The relevant planning authority should be consulted at an early stage to determine if planning permissions are required.

Under most circumstances for domestic dwellings, the PV array can be installed under the amendments made in the General Permitted Development Order (GPDO), or the Town and Country Planning (General Permitted Development) (Domestic Microgeneration) (Scotland) Amendment Order 2009.

These grant rights to carry out certain limited forms of development on the home, without the need to apply for planning permission. However this may not be the case in areas of outstanding natural beauty (AONB), national parks conservation areas etc. Recent changes to planning regulations now also allow for similar provisions for commercial installations. Further information can be obtained from consult the planning portal at www.planningportal.gov.uk/planning.

2.4.3 Building Regulations

All installation work in or around occupied structures will be covered by the building regulations. Different sets of regulations apply depending on the geographical area within the UK. Whilst all of the regulations are set out and worded slightly differently, they all have the same aims and objectives of ensuring that the buildings that they cover are built and maintained in safe, reliable and most energy efficient way. It should be noted that by adding additional equipment to an electrical installation, it may be necessary to provide appropriate fire detection measures.

2.4.3.1 England & Wales

These regulations are segregated into parts A-P which individually cover key aspects of the buildings safety and performance. When installing a Photovoltaic system the work has to comply with all parts of the building regulations, these parts of the regulations cover the following aspects of work;

Those which are most immediately relevant to the installation of a PV system have been highlighted below (\checkmark), however it must be noted that other parts may also apply, and where they do compliance must be achieved.

- A. Structure ✓
- B. Fire Safety ✓
- C. Resistance to contaminants and moisture \checkmark
- **D.** Toxic Substances
- E. Resistance to sound
- F. Ventilation
- G. Sanitation, Hot water safety and water efficiency
- H. Drainage and waste disposal
- J. Heat Producing Appliances
- K. Protection from falling
- L. Conservation of fuel and power
- M. Access to and use of buildings
- N. Glazing safety
- P. Electrical safety \checkmark

In all cases notification has to be made to the local area building control (LABC) that the work has taken place. Notification can take place several ways but the two principle methods are:

- 1. Submitting a building notice to the LABC (has to be prior to work commencing)
- 2. Notifying the work through a competent persons scheme this can be done after the work has been completed

Note: Where it is determined that structural work <u>is required</u> to alter or strengthen a roof prior to the installation of the PV system – such works will always require a building notice to be submitted. Where it has been determined that the structure can accept the loads concerned, either a building notice or notification via a competent persons scheme is deemed to meet the requirements of the building regulations.

Generally those involved with PV installation work will want to use method 2 or employ contractors who use method 2 as method 1 can be expensive and time consuming. When registering with a competent person's scheme, an installer can register for one or more categories of work. PV system installers will typically register under a scheme that offers notification of Microgeneration and part P work categories (to cover both of the key aspects). Successful registration will mean that an installer will be able to install and then notify the work after completion (within 30 days).

It is important to note that although registered under a "key" category of work the registrant is also responsible for ensuring compliance with all other categories of work. The registrant should also be aware that these other categories are also covered by the certificate of compliance that the householder receives from the competent person's scheme. This is especially important factor to PV installers as it means that not only are they specifically notifying that the electrical and microgeneration work is compliant, but it also covers all other applicable aspects of the building regulations including part A (structure). The following table summarises the routes for registering an installation:

			Activities that require notification		
Installer status		PV array notification	New a.c. circuit / installation of a		
MCS Only	MCS and CPS for renewa-	MCS, CPS for renewables &	Row 17 of schedule 3 of the building regulations	generator notification Row 12 of schedule 3 of the	
	bles only	Part P	(microgeneration)	building regulations (electrical)	
\checkmark			Notification must be done direct to LABC	Notification done direct to LABC unless installer uses a Part P registered subcontractor	
	\checkmark		Notification made through competent persons scheme for row 17 (microgeneration)	Notification done direct to LABC unless installer uses a Part P registered subcontractor	
		\checkmark	Notification made through competent persons scheme for row 17 (microgeneration)	Notification made through competent persons scheme for row 12	

Notes:

1. A full list of Competent Person Scheme (CPS) providers can be found on the CLG website at: http://www.communities.gov.uk/planningandbuilding/buildingregulations/competentpersonsschemes/ existingcompetentperson/

2.4.3.2 Scotland

All solar PV systems installed on a building must comply with the requirements of the Building (Scotland) Regulations 2004 as amended. Guidance on complying with the Building (Scotland) Regulations 2004 as amended is given in the two Scottish Building Standards (SBS) Technical handbooks (Domestic and Non-domestic)

Each handbook has seven sections:

Section1 – Structure	(Mechanical resistance and stability)
Section 2 – Fire	(Safety in fire)
Section 3 – Environment	(Hygiene, health and the environment)
Section 4 – Safety	(Safety in use)
Section 5 – Noise	(Protection against noise)
Section 6 – Energy	(Energy, economy and heat retention)
Section 7 – Sustainability	(Sustainable use of natural resources)

Each of the seven sections consists of an introduction and guidance on the individual standards within each Section. Where any building contains both domestic and non-domestic use, it is a general principle that the more stringent of the two sets of recommendations should be used.

New Buildings - For a new building (domestic or non-domestic) which includes the installation of a solar PV system the installation of the system will be covered by a building warrant and therefore must comply with the relevant functional standards.

Existing Buildings - For an existing one or two storey dwelling which is capable of supporting the solar PV equipment without structural alterations a building warrant is not required, however if the existing structure of the dwelling requires strengthening a building warrant will be necessary. For an existing building, guidance issued by the Scottish Governments Building Standards Division states that before installing PV panels on an existing roof, a structural appraisal should be undertaken by a competent person.(see section 4.4.2). Further information on this can be found at:

http://www.scotland.gov.uk/Topics/Built-Environment/Building/Building-standards/publications/pubverletts/lettdommicrogen

Further advice on specific projects can also be obtained by contacting the relevant local authority's Building Standards office. Information on which is the relevant local authority for any given location can be obtained from the website of the Scottish Association of building Standards Managers (SABSM)

http://www.sabsm.co.uk/ system performance

3 System Performance

3.1 Array Orientation and Inclination

The effect of variations in array orientation and inclination on system performance is shown in the chart below. The example shown is for a location in the middle of the UK and represents the percentage of maximum yield you may expect to get for different angles and orientations.

This chart is indicative only and should not be used for the calculation of performance estimates

3.2 Shade Effects

Shade makes a big impact on the performance of a PV system. Even a small degree of shading on part of an array can have a very significant impact on the overall array output. Shade is one element of system performance that can be specifically addressed during system design – by careful selection of array location, equipment selection and layout and in the electrical design (string design to minimise shade effects).

Shading from objects adjacent to the array (for example: vent pipes, chimneys, and satellite dishes) can have a very significant impact on the system performance. Where such shading is apparent, either the array should be repositioned out of the shade zone, or where possible the object casting the shade should be relocated.

3.3 Geographical Location

The amount of irradiance that falls onto the earth's surface alters across the UK according to several factors. The most significant factor is the location in respect of latitude (distance from the equator).

Generally speaking the further the array is from the equator the less irradiation there will be; subsequently the further North the installation is the less output can be expected from a PV system. This does not preclude systems in the north as there are other factors to consider.

In order to assess these differences the performance estimate in section 3.7 shall be used to make any comparisons.

The variation in irradiance across the UK is shown on the following map:

Average period: 1993 - 2007 Picture courtesy of the Met Office

3.4 Temperature Effects

Module temperature – An increase in module temperature results in a decrease in performance (eg 0.5% per 1°C above stc for a crystalline module). Sufficient ventilation must be provided behind an array for cooling (typically a minimum 25mm vented air gap to the rear). For building integrated systems, this is usually addressed by the provision of a vented air space behind the modules. On a conventional pitched roof, batten cavity ventilation is typically achieved by the use of counterbattens over the roof membrane and by the installation of eaves and ridge ventilation.

Note: It may be possible to omit counterbattens with some integrated PV roofing products / roof construction. This is acceptable where there is test data showing that a specific integrated PV product and associated roof construction provide a similar PV cell temperature performance to a roof with a ventilated counterbatten space.

3.5 Other Factors

A variety of other factors will also affect system performance, including:

- Panel characteristics & manufacturing tolerances
- Inverter efficiency
- Inverter array matching
- Cable losses
- Soiling of the array (more relevant in certain locations)
- Grid availability
- Equipment availability (system down-time due to equipment failures)

3.6 Daily and Annual Variation

Typical daily and annual insolation curves, together with the monthly and seasonal trend in system performance are shown in the charts below.

3.7 Photovoltaic Performance Estimation

As can be seen above, the annual performance of a grid connected PV system depends on a large number of factors. Against this background, the methodology described below is necessarily simplified in order to create a standard method that can be used to achieve a reasonable estimation of performance without it being an unduly complex procedure.

The purpose of a standardised procedure is intended to prevent miss-selling and overestimation of PV systems – such that all customers will receive a system performance estimation completed to a standardised procedure.

3.7.1 Site Evaluation

Inclination, orientation and shading are the three main site factors that influence the performance of a PV system. While drawings, maps or photos are a suitable means to determine inclination and orientation, an accurate estimation of any shade effects will typically require a site visit.

In some circumstances however, data may need to be estimated or taken remotely. In such circumstances, any performance estimate provided to a customer should include the following statement:

"This system performance calculation has been undertaken using estimated values for array orientation, inclination or shading. Actual performance may be significantly lower or higher if the characteristics of the installed system vary from the estimated values."

In all cases where inclination, orientation or shade has been estimated at quotation stage, e.g. for a new build development, a site survey shall be undertaken before installation commences.

Following the detailed site survey, where any factors do not match those given in the original performance estimate, the installation company shall recalculate the performance estimate and supply this in writing to the client.

If the adjusted performance estimate is worse than originally predicted, the client shall be given the same cooling off period and cancellation rights (to include any right to cancel without financial penalties) that applied to the original quote. This shall apply from the date of issue of the updated performance estimate.

3.7.2 Standard Estimation Method

The approach is as follows:

- 1. Establish the electrical rating of the PV array in kilowatts peak (kWp)
- 2. Determine the postcode region
- 3. Determine the array pitch
- 4. Determine the array orientation
- 5. Look up kWh/kWp (Kk) from the appropriate location specific table
- 6. Determine the shading factor of the array (SF) according to any objects blocking the horizon using shade factor procedure set out in 3.7.7

The estimated annual electricity generated (AC) in kWh/year of installed system shall then be determined using the following formula:

Annual AC output (kWh) = kWp x Kk x SF

3.7.3 kWp of Array (kWp)

The kWp value used shall be the sum of the data plate value (Wp at STC) of all modules installed (the value printed on the module label).

3.7.4 Postcode Zone

Determine the postcode zone of the site from the map and the table on the following pages. Once this has been obtained, you will be able to select the correct table for the kWh/kWp (Kk) values to be selected.

Note: These zones are the same as the SAP postcode zones

Postcode	Zone	Postcode	Zone	Postcode	Zone	Postcode	Zone
AB	16	G	14	N	1	SK	7E
AL	1	GL	5E	NE	9E	SK13	6
В	6	GU	1	NG	11	SK17	6
BA	5E	GU11-12	3	NN	6	SK22-23	6
BB	7E	GU14	3	NP	5W	SL	1
BD	11	GU28-29	2	NPS	13	SM	1
BD23-24	10	GU30-35	3	NR	12	SN	5E
BH	3	GU46	3	NW	1	SN7	1
BL	7E	GU51-52	3	OL	7E	SO	3
BN	2	HA	1	OX	1	SP	5E
BR	2	HD	11	PA	14	SP6-11	3
BS	5E	HG	10	PE	12	SR	9E
BT	21	HP	1	PE9-12	11	SR7-8	10
CA	8E	HR	6	PE20-25	11	SS	12
СВ	12	HS	18	PH	15	ST	6
CF	5W	HU	11	PH19-25	17	SW	1
СН	7E	HX	11	PH26	16	SY	6
CH5-8	7W	IG	12	PH30-44	17	SY14	7E
CM	12	IP	12	PH49	14	SY15-25	13
CM21-23	1	IV	17	PH50	14	TA	5E
CO	12	IV30-32	16	PL	4	TD	9S
CR	1	IV36	16	PO	3	TD12	9E
СТ	2	KA	14	PO18-22	2	TD15	9E
CV	6	KT	1	PR	7E	TF	6
CW	7E	KW	17	RG	1	TN	2
DA	2	KW15-17	19	RG21-29	3	TQ	4
DD	15	KY	15	RH	1	TR	4
DE	6	L	7E	RH10-20	2	TS	10
DG	8S	LA	7E	RH77	2	TW	1
DH	10	LA7-23	8E	RM	12	UB	1
DH4-5	9E	LD	13	S	11	W	1
DL	10	LE	6	S18	6	WA	7E
DN	11	LL	7W	S32-33	6	WC	1
DT	3	LL23-27	13	S40-45	6	WD	1
DY	6	LL30-78	13	S49	6	WF	11
E	1	LN	11	SA	5W	WN	7E
EC	1	LS	11	SA14-20	13	WR	6
EH	15	LS24	10	SA31-48	13	WS	6
EH43-46	9S	LU	1	SA61-73	13	WV	6
EN	1	М	7E	SE	1	YO	10
EN9	12	ME	2	SG	1	YO15-16	11
EX	4	MK	1			YO25	11
FK	14	ML	14			ZE	20
FY	7E						

3.7.5 Orientation

The orientation of the array is to be measured or determined from plan. The required value is the azimuth angle of the PV modules relative to due South. Hence, an array facing due south has an azimuth value of 0°; an array facing either SW or SE has an azimuth value of 45°; and an array facing either East or West has an azimuth value of 90°.

The azimuth value is to be rounded to the nearest 5°.

3.7.6 Inclination

The Inclination (or pitch) of the array is to be measured or determined from plan. The required value is the degrees from horizontal. Hence, an inclination of 0° represents a horizontal array; 90° represents a vertical array.

The inclination value is to be rounded to the nearest 1°.

3.7.6.1 kWh/kWp Value (Kk)

Tables of kWh/kWp (Kk) values are provided for each postcode zone. Abbreviated tables are contained in Annex D of this document. Full tables are available to download from the MCS website.

The tables provide kWh/kWp values for the zone in question for 1° variations of inclination (p[itch) and 5° variations of orientation.

Note: This data has been provided by the European Commission, Joint Research Centre. The data is drawn from the Climate-SAF-PVGIS dataset and multiplied by 0.8

3.7.7 Shade Factor (SF)

Where there is a potential for shading from objects further than 10m away from the centre midpoint of the array then the procedure given in 3.7.7.1 shall be applied, where there are objects at or less than 10m away from the centre midpoint of the array then the procedure stated in clause 3.7.7.2 shall be used **in addition** to the method in clause 3.7.7.1.

3.7.7.1 Determining shading factor as a result of objects further than 10m from the centre and midpoint of the array

Where there is an obvious clear horizon and no near or far shading, the assessment of SF can be omitted and an SF value of 1 used in all related calculations.

Where there is potential for shading, it shall always be analysed and the reading shall be taken from a location that represents the section of the potential array that is most affected by any shade. For systems with near shading this will typically be just to the North of the near shading object.

It is intended that this assessment provides an indicative estimate of the potential shading on the solar array. This is done by indicating how much of the potential irradiance could be blocked by objects on the horizon at differing times of the day and of the year (as indicated by the different arcs).

The sunpath diagram below shall be used to produce a shading analysis for all estimates produced.

The potential shading is analysed as follows:

Stand as near as possible to the base and centre of the proposed array, e.g. through an upstairs window, unless there is shading from objects within 10m (e.g. aerials, chimneys, etc.), in which case the assessment of shading must be taken from a position more representative of the centre and base of the potentially affected array position.

Looking due south (irrespective of the orientation of the array), draw a line showing the uppermost edge of any objects that are visible on the horizon (either near or far) onto the sunpath diagram

Note: There are purpose made instruments for undertaking sunpath assessments; the use of such instruments is optional

Once the horizon line has been drawn, the number of segments that have been touched by the line, or that fall **under** the horizon line shall be counted, in the following example you can see there are 11 segments covered or touched by the horizon line.

The total number of segments are multiplied by their value (0.01) and the total value shall be deducted from 1 to arrive at the shading factor.

The result will be the shading factor for the proposed installation, in our example the shading factor is calculated as follows:

$$1 - (11*0.01) = 1 - 0.11 = 0.89$$

For systems connected to multiple inverters, or a single inverter with more than one MPP, it is acceptable to do a separate calculation of SF for each sub array (each array connected to a dedicated MPP tracker.

Note: installing a system will any significant near shading will have a considerable effect on array performance. Where possible any near shading on the array should be avoided.

IMPORTANT NOTE

This shade assessment procedure has been designed to provide a simplified and standardised approach for MCS installers to use when estimating the impact of shade on system performance. It is not intended to be as accurate as more sophisticated methods such as, for example, those included in proprietary software packages. It is estimated that this shade assessment method will yield results within 10% of the actual annual energy yield for most systems. Unusual systems or environments may produce different results.

Where the shading factor is less than 1 (i.e. any shading is present) the following disclaimer shall accompany the quotation:

"This shade assessment has been undertaken using the standard MCS procedure - it is estimated that this method will yield results within 10% of the actual annual energy yield for most systems."

3.7.7.2 Determining shading factor as a result of objects at, or less than, 10m from the centre midpoint of the array

As noted previously, shading from objects adjacent to the array (for example: vent pipes, chimneys, and satellite dishes) can have a very significant impact on the system performance. Where such shading is apparent, either the array should be repositioned out of the shade zone, or where possible the object casting the shade should be relocated. Where some near shade remains, the following additional shade analysis procedure shall be undertaken in addition to the method described in 3.7.7.1:

- a. A standard horizon line, as described previously, shall be drawn to represent the worst case (drawn from the array location most affected by shade)
- b. In addition, any objects on the horizon diagram that are 10m or closer to any part of the array, shall have a shade circle added to the diagram to reflect the severe impact that these items may have on the array performance. Where there are multiple objects within 10m, then multiple circles shall be drawn one for each object.

The shade circle shall have a radius equal to the height of the object. The shade circle should be located so that the apex of the circle sits on the highest point of the shade object.

All segments touched by or within the shade circle should be counted as part of the overall shade analysis.

Note: The above diagram uses the same shade object as the worked example in section 3.7.7. Assuming the object is near shade results in a shade factor of 0.6 (compared with 0.89 in the previous calculation).

3.7.8 Documentation

For systems under the MCS scheme, a performance estimate that determines the total annual a.c. energy output of a given system shall be communicated with the client before the point that the contract is awarded.

Along with the performance estimate, the client shall be provided with the sun path diagram and the information used to calculate the performance estimate as illustrated in the following table.

A. Installation data	
Installed capacity of PV system - kWp (stc)	kWp
Orientation of the PV system – degrees from South	0
Inclination of system – degrees from horizontal	0
Postcode region	
B. Calculations	
kWh/kWp (Kk) from table	kWh/kWp
Shade factor (SF)	
Estimated annual output (kWp x Kk x SF)	kWh

All quotations and / or estimates to customers shall be accompanied by one or more of the following disclaimers where applicable:

For all quotations and / or estimates:

"The performance of solar PV systems is impossible to predict with certainty due to the variability in the amount of solar radiation (sunlight) from location to location and from year to year. This estimate is based upon the standard MCS procedure is given as guidance only. It should not be considered as a guarantee of performance."

Additionally where data has been estimated or taken remotely (clause 3.7.1):

"This system performance calculation has been undertaken using estimated values for array orientation, inclination or shading. Actual performance may be significantly lower or higher if the characteristics of the installed system vary from the estimated values."

Additionally where the shade factor is less than 1 (clause 3.7.7):

"This shade assessment has been undertaken using the standard MCS procedure - it is estimated that this method will yield results within 10% of the actual annual energy yield for most systems."

3.7.9 Additional Estimates

Additional estimates may be provided using an alternative methodology, including proprietary software packages, but any such estimates must clearly describe and justify the approach taken and factors used and must not be given greater prominence than the standard MCS estimate. In addition, it must be accompanied by a warning stating that it should be treated with caution if it is significantly greater than the result given by the standard method.

4 INSTALLATION/SITEWORK

4.1 General

Standard health and safety practice and conventional electrical installation practice must apply to the installation of a PV system. Issues such as working on roofs or standard domestic a.c. wiring are covered thoroughly in other publications and are not detailed in this guide. Attention shall be paid to the location of accessories and equipment to ensure that any future service and maintenance can be carried out.

4.2 PV Specific Hazards

When compiling a method statement and risk assessment for the installation of a PV system, there are a number of PV specific hazards that need to be addressed. These will be in addition to standard considerations such as PPE (Personal Protective Equipment), working at height, manual handling, handling glass and the application of the construction design and management (CDM) regulations.

- PV modules produce electricity when exposed to daylight and individual modules cannot be switched off. Therefore unlike most other electrical installation work, the installation of a PV system typically involves working on a live system. See requirements of Regulation 14 of Electricity at Work Regulations 1989.
- As current limiting devices, PV module string circuits cannot rely on fuse protection for automatic disconnection of supply under fault conditions, as the short-circuit current is little more than the operating current. Once established, a fault may remain a hazard, perhaps undetected, for a considerable time.
- Good wiring design and installation practice will serve to protect both the system installers and any persons subsequently coming into contact with the system from an electric shock hazard (operator, owner, cleaner, service engineers, etc).
- Undetected, fault currents can also develop into a fire hazard. Without fuse protection to clear such faults, protection from this fire hazard can be achieved only by both a good d.c. system design and a careful installation.
- PV presents a unique combination of hazards due to risk of shock, falling, and simultaneous
 manual handling difficulty. All of these hazards are encountered as a matter of course on a
 building site, but rarely all at once. While roofers may be accustomed to minimising risks of
 falling or injury due to manual handling problems, they may not be used to dealing with the risk
 of electric shock. Similarly, electricians would be familiar with electric shock hazards but will not
 be used to handling large objects at heights.

4.3 d.c. Circuits - Installation

4.3.1 Personnel

All persons working on the live d.c. cabling of a Photovoltaic (PV) system must be experienced / trained in working with such systems and fully acquainted with the voltages present on that system in particular.

Plug and socket connectors simplify and increase the safety of installation works – see section 2.1.7. They are recommended in particular for any installation being performed by a non-PV specialist – e.g. a PV array being installed by a roofer.

4.3.2 Sequence of Works

All d.c. wiring should if possible be completed prior to installing a PV array. This will allow effective electrical isolation of the d.c. system (via the d.c. switch-disconnector and PV module cable connectors) while the array is installed; and effective electrical isolation of the PV array while the inverter is installed.

Typically this would require an installation sequence of:

- d.c. switch-disconnector and d.c. junction box(es)
- String/array positive and negative cables from the d.c. disconnect/junction box to either end of the PV string/array;
- PV array main cables from d.c. switch to inverter.

This should be carried out in such a way that it should never be necessary for an installer to work in any enclosure or situation featuring simultaneously accessible live PV string positive and negative parts.

Note: While the installer will be handling live cables during the subsequent module installation, because the circuit is broken at the d.c. switch-disconnector, there is no possibility of an electric shock current flowing from the partially completed PV string. The maximum electric shock voltage that should ever be encountered is that of one individual PV module.

Where it is not possible to pre-install a d.c. isolator (eg a new-build project where a PV array is installed prior to the plant room being completed), cable ends/ connectors should be put temporarily into an isolation box and suitably labelled (as per d.c. junction box – section 2.1.9).

Cables are to be well supported, especially those cables exposed to the wind. Cables must be routed in prescribed zones or within mechanical protection, fully supported / cable tied (using UV stabilised ties) and they must also be protected from sharp edges.

4.3.3 Live Working

Due to the nature of PV installation work live working is almost unavoidable. However, given the nature of the system design and so long as the system is designed to fully meet the requirements set out for shock protection by the use of double or reinforced insulation, working on one conductor only represents only a small risk which is usually mitigated by the use of appropriate tooling and operative care.

If it is unavoidable to work in any enclosure containing both positive and negative connections that are simultaneously live, work must be performed either by utilising insulating gloves & tools, insulating materials for shrouding purposes and appropriate personal protective equipment.

These situations are only likely to arise whilst working on larger systems and wherever possible these situations should be avoided by following the advice given in section 4.3.2.

A temporary warning sign and barrier must be posted for any period while live PV array cables or other d.c. cables are being installed.

A means to prevent the need for live working may be to work at night (with appropriate task lighting). Covering an array is also sometimes suggested as an alternative method. However, covering a PV array is not generally recommended due to the practical problems of keeping the array covered as the installation proceeds and protecting the covering from the effects of the weather.

4.3.4 Shock Hazard (Safe Working Practices)

It is important to note that, despite all the above precautions, an installer or service engineer may still encounter an electric shock hazard, therefore:

Always test for the presence of voltage of parts before touching any part of the system.

An electric shock may be experienced from a capacitive discharge – a charge may build up in the PV system due to its distributed capacitance to ground. Such effects are more prevalent in certain types of modules and systems, namely amorphous (thin film) modules with metal frames or steel backing. In such circumstances, appropriate and safe live working practices must be adopted.

An example of where such hazards may be encountered is the case where an installer is seated on earthed metal roof whilst wiring a large PV array. In such circumstances the installer could touch the PV cabling and might get an electric shock to earth. The electric shock voltage will increase with the number of series connected modules. The use of insulated tools and gloves, together with insulating matting to stand or sit on, can mitigate this hazard.

An electric shock may also be experienced due to the PV array developing a ground (earth) leakage path. Good wiring practice, double insulation and modules of double or reinforced insulation (class II) construction can significantly reduce this problem, but in any installed systems, leakage paths may still occur. Any person working on a PV system must be aware of this and take the necessary precautions.

4.3.5 Array Mounting

The manufacturer's instructions should always be observed when designing a PV array mounting structure. In particular, attention shall be paid to the clamping zones as prescribed by each manufacturer as these will often vary.

4.3.6 Load Calculations

The design and specification of the PV array mounting system should take into account the wind and snow loads to be expected. Wind loads vary considerably across the UK and are influenced by factors such as site altitude, building height and local topography.

Even where an approved mounting system kit is utilised, site specific calculations will be required to ensure that the system proposed is sufficient to withstand the imposed loads.

For each site the imposed wind and snow loads should be derived using the procedures within Eurocode- 1 (BS EN 1991-1).

The pressure coefficients (C_n) used to calculate wind loads shall be derived as follows:

- For PV arrays that are mounted above, and parallel to, an inclined roof where there is a clear gap between the array and the roof the pressure coefficients shall be taken from BRE digest 489 or from recognised test data commissioned for the specific purpose of determining the wind loads on solar systems.
- For flat roof systems the pressure coefficients shall be taken from BRE digest 489 or from recognised test data commissioned for the specific purpose of determining the wind loads on solar systems.
- For roof integrated, nominally airtight systems the pressure coefficients shall be taken from Eurocode-1.
- For roof integrated, air permeable "PV tile" type systems the pressure coefficients shall be taken from BS5534 and treating the PV array as roof tiles

In determining the appropriate pressure coefficient to use in calculations, the location of the PV array on the roof needs to be determined as some, or all, of the array may be in the "Edge Zone" as defined in BS EN 1991-1.

Pressure coefficients for the Edge Zone will be higher than those in the Central Zone of the roof. BRE digest 489 and the other sources listed above include pressure coefficient values for both Edge and Central zones.

Note: A simplified method to derive wind loads is described in annex B

Calculating a safety factor for the derived load

As described within Eurocode-1 tables A1.1 and A1.2, safety factors need to be applied to the calculated loads. Taken in isolation, a safety factor of 1.5 should be applied to the derived wind and snow loads and a factor of 1.0 to the dead load (self-weight).

However, in normal use solar panels may be designated with a lower consequence of failure than for the supporting building structure, in accordance with Table B1 of EN 1990: 2002 + A1:2005 Consequence Class CC1. As a result the partial factor for design wind and snow loads may be multiplied by 0.9 (Factor KFI for Reliability Class RC1 from Table B3 of EN 1990: 2002 +A1 : 2005). Hence a safety factor of 1.35 should be applied to the derived wind and snow loads. Load calculations shall be undertaken by a suitably competent person.

4.3.7 Fixing Calculations

The PV array fixings (type and quantity) shall be checked to ensure that they can withstand the imposed (dead) load and wind uplift loads as calculated. Examples of how this can be achieved include:

- For systems approved to MCS012 ensuring that the imposed loads are within the range specified by the product manufacturer (and then installing according to the manufacturer's instructions)
- Using fixing data from Eurocode 5 design of timber structures
- Using fixing bracket test data

Note: Many standard above roof systems for pitched roofs suggest a screw layout that conflicts with the requirements of Eurocode 5 to keep fixings a certain number of screw diameters away from the rafter edge and each other. In such cases one solution is to fix the mounting bracket to a timber noggin fitted between the rafters. Alternatively, the fixing resilience can be determined from test data.

In all cases it is expected an appropriate safety factor to have been applied to the fixing withstand capacity

Note: for systems listed to MCS012, a safety factor will have been applied as a part of the certification process and will be shown in the MCS012 certification.

Fixing calculations shall be carried out by a suitably competent person.

4.3.8 Building Structure Calculations

The roof structure shall be checked to ensure it can withstand the imposed loads as calculated. This is to include a site inspection by a suitably competent person.

The table below details some typical scenarios and possible calculation methodologies for pitched roofs. Where the roof is unusual in anyway, such as, for example:

- Signs of structural distress
- Signs of post construction modification (e.g. removal of timbers, notching, change of roof covering),
- The roof pitch is particularly shallow (<30°)

- The roof design has increased potential for snow build-up (e.g. dormers, valleys, parapets etc)
- The type of construction is not detailed in the table

or if there is any doubt whatsoever then a qualified structural engineer shall be consulted.

For installations on flat roofs, special consideration shall be given to the load of the PV system and any associated ballast. Structural calculations shall be carried out by a suitably competent person.

Fig 26			
Diagram	Construction Type of Roof	Typical Methodologies	
Roof constructed from Timber	Trussed Rafters	Method 1: Assuming a typical design dead load of 0.785kN/ m ² , deduct the load of the existing roof covering to give the maximum allowable residual load available for the solar array.	
		Method 2 (not generally applicable where the roof pitch exceeds 60°): Assuming a typical design imposed load of 0.75kN/ m2, deduct the likely snow load for the location taken from Eurocode-1 (BS EN 1991-1) to give the maximum allowable residual load available for the solar array.	
	Traditional cut roofs constructed from timber rafters/purlins - gable ended	Calculate the maximum dead load for the rafters and purlins using the TRADA Span tables (2nd or 3rd Edition), deduct the load of the existing roof covering to give the maximum allowable residual load available for the solar array.	
	Traditional cut roofs constructed from timber rafters/purlins – with hips and/or valleys	Consult a structural engineer.	
	Asymmetric duo- pitched roofs constructed from rafters and purlins	Consult a structural engineer.	
4.3.9 PV Roofing and Cladding Works

PV systems should not adversely affect the weather tightness of the structure to which they are fitted. The system should be designed and installed to ensure this is maintained for the life of the system.

For integrated systems, the weather tightness of the PV system should be the same or better than the roof or cladding systems they are replacing and should not adversely affect the weather tightness of the surrounding covering.

For above roof PV systems, the array fixing brackets should not affect the weather tightness of the roof they are fitted to. For example, systems attached to tile roofs should be designed and installed such that the fixing brackets do not displace the tiles and cause gaps more than naturally occurs between the tiles. Fixing methods must not subject roof coverings to imposed loads which may degrade their primary purpose of maintaining weather-tightness.

Fig 27

It is good practice to notch tiles when fixing a roof bracket

Tiles or slates removed for fixing a mounting bracket should be re-attached to include a means of mechanical fixing.

Historically, some mounting systems on slate or tile roofs have relied on a simple "through bolt" approach. However, this fixing method has the potential for the fixing bolts or sealing washer cracking the slates/tiles beneath them. It can also present difficulties with ensuring the long term weather tightness and durability of the roof penetration.

Through bolts shall only be used on tile or slate roofs where the following requirements are met:

- 1. The bolt or flashing shall not transfer any load on the slates / tiles beneath
- 2. The system shall not rely on silicone or other mastic sealant to provide a weather-tight seal
- 3. The system must durably seal every layer of roof covering that is perforated by the bolt system
- 4. The system shall not rely on a sealing washer or plate that presses down on the slate/tile to ensure a weather tight seal
- 5. The bolt fixings shall not be into battens

Using a standard roof hook on a slate roof

The roof underlay should be inspected for damage during installation works. Any damage should be repaired or the underlay replaced as necessary. Damaged underlay will not provide an effective weather and air barrier and can affect weather tightness and the wind loads imposed on the roof cladding.

Unless **specifically designed to do so**, systems should be kept away from the roof perimeter. For a domestic roof, a suitable minimum clearance zone is around 40-50cm.

The requirement to keep an arrays away from a the edge of a roof is suggested because: wind loads are higher in the edge zones; keeping edge zones clear facilitates better access for maintenance and fire services; taking arrays close to the roof edge may adversely affect rain drainage routes; and when retrofitting systems, there is the potential for damage to ridge, hip, valley or eaves details.

Note – on many roofs a 50cm gap from the edge will still mean that PV modules are fitted in the "Edge Zone" as defined in BS EN 1991-1 where higher pressure coefficients need to be implemented due to the higher imposed wind loads.

Cable penetrations through the roof should not affect the weather tightness of the roof and should be durably sealed to accommodate the movement and temperatures expected. The use of a purpose-made product is an example of a durable means to achieve this.

Cable penetrations through underlay should be achieved using purpose-made products or, if taken through a lap in the underlay, the cable should be carefully routed, clipped and tensioned so as to leave a minimal residual gap in the underlay lap joint.

Thermal expansion should be considered when installing larger arrays. The module and mounting system manufacturer should be consulted to determine the maximum array width and continuous rail length that can be permitted without the need for an expansion gap.

4.3.10 MCS Pitched Roof System Requirements

PV systems mounted above or integrated into a pitched roof should utilise products that have been tested and approved to MCS012 (test procedures used to demonstrate the performance of solar systems under the action of wind loads, fire, rainfall and wind driven rain).

Note: Under the MCS scheme, MCS012 becomes mandatory in September 2013

In roof products (eg PV tiles) – All fixing and flashing components used to mount and make weathertight the solar roofing product must be packaged and listed as part of a complete kit that includes the PV module. *The MCS installer must ensure that the system is installed to comply with the manufacturer's instructions*.

In roof mounting system – All fixing and flashing components used to mount and make weathertight the PV system must be specifically approved to work together (e.g. supplied and listed as a kit of parts) and listed to work with either the named PV module, or listed as a universal type where PV module type is immaterial to the performance of the system. *The MCS installer must ensure that the system is installed to comply with the manufacturer's instructions for both the mounting system and the PV module.*

Above roof mounting systems – All components used to mount the system must be specifically approved to work together or be listed as universal components. The mounting system must also be listed to work with either the named PV module, or listed as a universal type where PV module type is immaterial to the performance of the system. *The MCS installer must ensure that the system is installed to comply with the manufacturer's instructions for both the mounting system components and the PV module.*

In all cases it is expected that the manufacturers' fixing instructions are followed with respect to wind loading. Wind loads vary from site to site and the installer must ensure that the design wind load is within the range as specified by the manufacturer; and/or for high wind sites, any required additional fixings are correctly installed. Where an installer has chosen to utilise a mounting assembly comprised of "universal" components, the installer must ensure that all components are suitable for the wind load imposed on that component.

4.3.11 Standing Seam and Other Metal Roofs

Some PV array mounting systems rely on securing the array to the metal roof cladding. In such circumstances, the adequacy of the roof covering to transfer all additional loads back to the supporting structure should be verified. This should include consideration of all elements of the roof construction that could be affected by the additional loading. Calculations will include consideration of the array configuration (pitched or parallel to the roof) and the type, quantity and locations of PV array fixings.

Sitework should include verification to confirm that all the design requirements have been satisfied and that the roof covering has not been adversely affected by the installation work

5 Signs and Labels

All labels must be clear, easily visible, constructed and affixed to last and remain legible for the lifetime of the system.

Requirements for labelling are contained within the relevant sections of this guide. Example labels can be seen below.

Fig 29

Do not disconnect d.c. plugs and sockets under load-Turn off a.c.supply first.

PV Array d.c. junction box. Danger contains live parts during daylight.

PV Array d.c. isolator. Danger contains live parts during daylight.

PV system - Main a.c. isolator.

Inverter - Isolate a.c. and d.c. before carrying out work. In addition to the labels described elsewhere in this document, the following labels are also to be to be fitted:

Fig 30

6 Inspection, Testing and Commissioning Requirements

6.1 Inspection and Testing – a.c. Side

Inspection and testing of the completed system to the requirements of BS 7671 must be carried out and documented

The inspection and testing of a.c. circuits is comprehensively covered within BS 7671 and supporting technical guides, specifically Guidance Note 3. The forms required for the a.c. side (the BS 7671 model test certificates) are reproduced in annex C and are also available to download free of charge from the IET's website.

Inspection and testing documentation for the a.c. side typically comprises 3 documents:

- Electrical installation certificate,
- Schedule of items inspected
- Schedule of test results

6.2 Inspection and Testing – d.c. Side (PV Array)

The inspection and testing of the d.c. side of the PV system shall be in accordance with the requirements of BS 7671 and also BS EN 62446 *Grid connected photovoltaic systems — Minimum requirements for system documentation, commissioning tests and inspection*

The verification sequence contained within BS EN 62446 includes

- Inspection schedule
- Continuity test of protective earthing and/or equipotential bonding conductors (if fitted)
- Polarity test
- String open circuit voltage test
- String short circuit current test
- Functional tests
- Insulation resistance of the d.c. circuits

These tests shall be recorded on a PV array test report (see annex C) which shall be appended to the a.c. documents listed above.

Full details of the inspection schedule and guidance on test procedures is contained with BS EN 62446.

6.3 Engineering Recommendation (ER) G83 and G59 Requirements

Depending on the size of the PV installation, the requirements of either Engineering Recommendation G83 or G59 are to be followed when commissioning a grid connected PV system.

Systems up to 16A a.c. output per phase come under ER G83.This would correspond to 3.68kW single phase (230v Nominal) and 11.04kW three phase (400v nominal). These systems will not require any extra commissioning procedures (measures other than those described elsewhere in this document).

Systems over 16A per phase come under ER G59. These systems may require additional commissioning tests to verify the correct and safe operation of the grid interface protection circuits. Smaller systems using G59 type approved inverters may not require any additional tests.

However, for larger systems or systems where separate protection relays are fitted (a "G59 relay"), on site testing of the relay and protection system will often be required. For some systems, particularly those over 50kWp, the DNO may wish to witness the tests. In all cases, the DNO needs to be consulted over the test procedure required and whether the tests need to be witnessed by a DNO representative. Further information on testing procedures are contained within ER G59.

Standard forms are provided by the DNO's to document the commissioning of a PV system. See section 2.4.1 for more details on the process to be followed.

7 Handover & Documentation

The system user should be provided as a minimum with the information as described in of BS EN 62446 Grid connected photovoltaic systems — Minimum requirements for system documentation, commissioning tests and inspection. The following provides a summary of the information required:

- Basic system information (parts used, rated power, installation dates etc)
- System designer information
- System installer information
- Wiring diagram, to include information on:
 - Module type & quantities
 - String configurations
 - Cable specifications size and type.
 - > Over-current protective device specifications (where fitted) type and ratings.
 - > Array junction box locations (where applicable).
 - d.c. isolator type, location and rating
 - > Array over-current protective devices (where applicable) type, location and rating
 - > Details of all earth / bonding conductors size and connection points.
 - > Details of any connections to an existing Lightning Protection System (LPS).
 - Details of any surge protection device installed (both on a.c. and d.c. lines) to include location, type and rating.
 - AC isolator location, type and rating.
 - > AC overcurrent protective device location, type and rating.
 - > Residual current device location, type and rating (where fitted).
- Module datasheets
- Inverter datasheets
- Mounting system datasheet
- Operation and maintenance information, to include:
 - Procedures for verifying correct system operation.
 - > A checklist of what to do in case of a system failure.
 - Emergency shutdown / isolation procedures.
 - Maintenance and cleaning recommendations (if any).
 - > Considerations for any future building works related to the PV array (e.g. roof works).
- Warranty documentation for PV modules and inverters to include starting date of warranty and period of warranty.
- Documentation on any applicable workmanship or weather-tightness warranties.
- Test results and commissioning data

Annex A - Battery Systems

This section of the guide covers the additional requirements where a battery forms part of a PV installation – whether as part of a true stand-alone (off-grid) system or part of a hybrid (e.g. grid linked/ batteries) system.

Note: The design and requirements of any of the load circuits within such a system are outside the scope of this document.

A1 PV Array Charge Controller

This provides the regulator/dump interface between the PV array and the battery so as to prevent overcharging of the battery. The unit may also provide other functions such as maximum power point tracking, voltage transformation, load control and metering.

- The charge controller must be rated for the current and voltage maxima (see Section 2.1.2, minimum voltage and current ratings)
- The charge controller must be labelled as per the d.c. junction box requirements in section 2.1.9.
- The charge controller must carry a CE Mark.

A full recharge is important for good battery health. A small size cable between the charge control unit and the battery – with an associated high voltage drop – may lead to the control system prematurely halting the charge cycle. These cables should therefore be sized for a maximum voltage drop of less than 1% at peak PV array output. For controllers with a separate battery sense function, a fused battery sense cable can be installed.

Example Battery System:

A2 Battery Over Current Protection

A battery stores significant energy and has the capacity to deliver large fault currents. Proper fault protection must be provided.

An over current device must be installed in all live (non-earthed) conductors between the battery and the charge controller.

The over current device (either a fuse or circuit-breaker) must:

- Have a trip value and response time as specified within the charge controller manual
- Be rated for operation at d.c., at 125% of the nominal battery voltage
- Have an interrupt rating greater than the potential battery short circuit current.

The length of cable between the over current device and battery terminal must be as short as practicable.

A3 Battery Disconnection

A means of manual isolation must be provided between the charge controller and the battery, either combined with the over current device or as a separate unit. The isolator must be double pole, d.c. rated and load break, and the length of the cable between it and the battery must be as short as practicable. In positioning this device, the requirements of section A7 of this guide are also to be observed.

Note: In order to keep the cable run as short as practicable and to keep the device away from battery gasses – isolation devices will typically be located immediately to the side of the battery bank (rather than directly above).

Isolation is to be installed and the system designed so that the PV array cannot directly feed the loads when the battery has been disconnected.

Combined fault protection and isolation:

- A circuit-breaker provided for battery fault current protection may be used to provide isolation, if it is rated as an isolation device.
- A fuse assembly provided for fault current protection may be used to provide isolation if it has readily removable fuses (e.g. fuse unit with disconnect mechanism)

A4 Cables in Battery Systems

The requirements set out in the main sections of this guide apply: *Note: In some circumstances, a voltage drop greater than that in section 2.1.4.1 may be justified on economic grounds.* In addition, all cables must have a current rating above that of the relevant over current device (nearest downstream fuse / circuit breaker). Cable current ratings are to be adjusted using standard correction factors for installation method, temperature, grouping and frequency to BS 7671.

A5 PV String Cable and Fuse Ratings

String cables (upstream of the charge controller) must be rated to the trip current of the nearest downstream device plus the rating as calculated in section 2.1.5.

A PV–battery system must be designed such that the string cable and string fuse design and specification reflects that fault currents may come either from the array itself, from the battery or from both. Again, cable current ratings are to be adjusted using standard correction factors for installation method, temperature, grouping to BS 7671.

Note: Specification & labelling for the PV cables/ junction boxes/ connectors/ etc. should be as in the main sections of the guide.

A6 Battery Selection and Sizing

The selection of a battery is generally out of the scope of this document. However, some key considerations are:

- Is the battery fit for purpose, i.e. appropriately rated for its duties? In the majority of cases a true 'deep cycle' battery will be required
- Does it have an adequate storage capacity (days of autonomy) and cycle life?
- Is a sealed or vented battery more appropriate for the particular installation?
- Will the battery be made up of series cells or parallel banks? While series cells will generally give better performance, practical considerations may influence the design. In general, though, banks with more than four parallel units are to be avoided.

The sizing of a battery is generally out of the scope of this document. However, for an effective charging regime where a PV array is the only charge source, the battery would normally be sized so that the output of the PV array falls between the manufacturer's maximum and minimum recommended charge rates.

Charge/discharge rates (C) are commonly expressed as an hourly rate derived from the formula: Rate = Capacity (Ah) / Time (h) For example, a C10 charge rate for a 500Ah battery would take place at 50A.

Charge rates between C5 and C20 are often used in systems with vented lead acid batteries, for example.

A7 Battery installation / Labelling

In an enclosed location, ventilation must be provided to battery installations with an air inlet at low level and an outlet at the highest point in the room or enclosure.

Sufficient ventilation is needed to remove battery gases. It is particularly important in the case of vented lead acid units as hydrogen is given off during charging (which is lighter than air) – and a concentration of more than 4% creates an explosion hazard. Ventilation also prevents excessive heat build-up.

BS EN 50272-1 2010 'Safety requirements for secondary batteries and battery installations'. General safety information' gives a procedure for calculating ventilation requirements.

Battery banks must be housed in accordance with BS EN 50272-1 2010 and such that:

- Access can be restricted to authorised personnel
- Adequate containment is assured
- Appropriate temperature control can be maintained

Battery terminals are to be guarded so that accidental contact with persons or objects is prevented.

The ideal operating temperature for a lead acid battery is around 25°C, temperatures significantly above or below this will lead to reduced lifetime and capacity. Indeed, at very low temperatures, discharged batteries may freeze and burst; at high temperatures, thermal runaway can occur in sealed batteries.

Items which could produce sparks (e.g. manual disconnects, fuses, relays) should not be positioned within a battery box or directly above one.

Battery gases are corrosive, so cables and other items inside a battery enclosure need to be corrosion resistant. Sensitive electronic devices should not be mounted in, or above, a battery box.

To ensure proper load/charge sharing in a battery bank made up of units connected in parallel, the units need to have the same thermal environment and the same electrical connection resistance.

In larger battery banks, fusing each parallel unit should be considered.

A typical connection configuration for a small series-parallel bank (take-offs are on opposite corners):

The following warning signs are to be displayed:

- No Smoking or Naked Flames
- Batteries contain acid avoid contact with skin or eyes
- Electric shock risk (xxx) V d.c.

Note: Circuit protection and all points of isolation should also be labelled with

"d.c. Supply – {insert voltage} V d.c."

All labels should be clear, easily visible and should be constructed and fixed so as to remain legible and in place throughout the design life of the system.

Protective equipment, including appropriate gloves and goggles – together with an eye wash and neutralising agent – should be stored adjacent to the battery installation.

Annex B - Simplified Method for Determining Peak Wind Loads

The following simplified procedure to calculate wind loads is based on the on the peak velocity pressures derived from Eurocode-1 (BS EN 1991-1-4). A more accurate, typically lower value can be determined using the methodology and tables within Eurocode-1.

a. With reference to the site wind zone, site type (rural / urban), the ridge height of the building and the distance of the site from the sea - derive the peak velocity pressure (q_p) from the following table:

Peak velocity pressures (q _p) in pascals							
Wind	Ridge height	Country terrain Distance to sea			Urban terrain Distance to sea		
Zone	zone (m)		2km 2-20km >20km		<2km	2-20km >20km	
1	5	869	783	718	688	620	569
1	10	1009	955	872	883	836	763
1	15	1094	1062	977	1012	982	904
1	20	1122	1108	1017	1066	1052	966
1	25	1166	1166	1072	1137	1137	1045
2	5	1034	931	854	819	738	677
2	10	1201	1136	1038	1050	994	908
2	15	1302	1264	1163	1204	1169	1075
2	20	1335	1318	1210	1268	1253	1149
2	25	1388	1388	1276	1353	1353	1244
3	5	1213	1093	1003	961	866	794
3	10	1409	1334	1218	1233	1167	1066
3	15	1527	1483	1364	1413	1372	1262
3	20	1567	1547	1420	1489	1470	1349
3	25	1629	1629	1498	1588	1588	1460
4	5	1407	1268	1163	1115	1004	921
4	10	1634	1547	1413	1430	1353	1236
4	15	1772	1720	1582	1639	1591	1464
4	20	1817	1795	1647	1726	1705	1565
4	25	1889	1889	1737	1842	1842	1694
5	5	1703	1534	1407	1349	1215	1115
5	10	1977	1872	1710	1730	1638	1496
5	15	2144	2081	1915	1983	1925	1771
5	20	2199	2171	1993	2089	2063	1893
5	25	2286	2286	2102	2229	2229	2049

Fig 34

b) Apply correction factors for site altitude (h) in metres:

Height above sea level	Correction factor
0-100m	None
>100m	$1 + \left[\frac{h-100}{100} \times 0.2 \right]$

Note: the altitude correction formula for sites over 100m above sea level calculates a 20% increase for each 100m above the initial 100m. Hence a site at 180m above sea level would have a correction factor of 1.16.

c) Apply correction factor for topography

Sites more than half way up a hill							
Site classification	Correction factor		Zone A				
Slope = 10%	1.2						
Slope = 20%	1.45						
Slope ≥ 30%	1.7		0.5L				
		Esca	arpments				
Site classification	Zone A	Zone B	Zone A Zone B				
Slope = 10%	1.2	1.12					
Slope = 20%	1.45	1.25					
Slope ≥ 30%	1.7	1.4	4→ 4→ 4→ → 0.5L 0.5L L				

Where a site is selected that does not match exactly the slope % quoted, then factor can be derived by either rounding up to the next highest value, or by interpolation.

d) Calculate wind pressure using the following formula

$$\mathbf{w} = \mathbf{q}_{p} \mathbf{x} \mathbf{c}_{p}$$

Where: w ... is the wind pressure in Pascals

q_n ... is the peak velocity pressure derived in steps a-c

c ... is the pressure coefficient for the particular installation

Note: the pressure coefficient c_p will depend upon the type of system and the array location on the building. The procedure for selecting the appropriate pressure coefficient is covered in clause 4.3.6.

Note: A safety factor will also need to be applied to the derived load – see clause 4.3.6 for more details

Example Calculation #1

- Above roof PV array, mounted away from edges in central zone of roof ($C_{_D}$ uplift = -1.3)
- Site located in central London (more than 2km from edge of town)
- Site more than 20km from the sea
- Building height = 10m
- Site altitude = 20m
- Topography = not significant
 - a. Site in zone 1 (22 m/s) \rightarrow Table gives value for q = 763Pa
 - b. Altitude correction factor = none
 - c. Topography correction factor = none
 - d. W_{unlift} = 763 x -1.3 = -992Pa (value excludes safety factor)

Example Calculation #2

- Above roof PV array, mounted away from edges in central zone of roof ($C_{_D}$ uplift = -1.3)
- Site located in rural Yorkshire near the top of a hill of 8% slope
- Site more than 20km from the sea
- Building height = 10m
- Site altitude = 150m
 - a. Site in zone 2 (24 m/s) \rightarrow Table gives value for q_n = 1038P
 - b. Altitude correction factor = 1 + (150-100/100)*0.2 = 1.1
 - c. Topography correction factor = 1.2
 - d. W_{uplift} = 1038 x 1.1 x 1.2 x -1.3 = -1781Pa (value excludes safety factor)

Annex C – PV Array Test Report

Fig 36	PV Array Test Report					Initial verificationPeriodic verification		
	Installation address					Reference		
						Date		
	Description of work under test						Inspector	
						Test instrur	nents	
	String		1	2	3	4		n
	Array	Module Quantity						
	Array parameters (as specified)	Voc (stc) Isc (stc)						
	String over-current protective device	Type Rating (A) DC Rating (V) Capacity (kA)						
	Wiring	Type Phase (mm²) Earth(mm²)						
	String test	Voc (V) Isc (A) Irradiance						
	Polarity check							
	Array installation Resistance	$\begin{array}{c} \mbox{Test voltage } (V) \\ \mbox{Pos - Earth } (M\Omega) \\ \mbox{Neg - Earth } (M\Omega) \end{array}$						
	Earth continuity (whe	ere fitted)						
	Switchgear functionir							
	Inverter make/ mode							
	Inverter serial number	er						
	Inverter function corr							
	Loss of mains test							

Comments

Annex C – Electrical I	nstallation Certificate
------------------------	-------------------------

Fig 37a ELECTRICAL INSTALLATION CERTIFICATE BS 7671:2008

THREE SIGNATURE	Certificate number:		Registration number:	(optiona) Sheet	of
DETAILS OF THE CLIENT						
INSTALLATION ADDRESS						
DESCRIPTION AND EXTENT	OF THE INSTALLAT	ION	Tick boxes as a	appropriate	New installation	
Evtent of installation covered by this C	artificato:				Addition to an existing installat	ion
					Alteration to an	ion
(Use continuation sheet if necessary)		See c	ontinuation sheet no		existing installat	
FOR DESIGN I/We being the person(s) responsible described above, having exercised rea been responsible is, to the best of my/or if any, detailed as follows:	for the design of the ele sonable skill and care w ur knowledge and belief, i	ectrical insta hen carryin n accordanc	llation (as indicated by my/o g out the design, hereby CEF e with BS 7671:2008 amende	ur signatures RTIFY that the d to	below), particular design work of w (date) except	rs of which are /hich l/we have for departures,
Details of departures from BS 7671 (re	gulation 120.3 and 133.5	i)				
The surface of the billion of the science of the					. O	
For the DESIGN of the installation:	y or signatories is limit	ed to the w	ork described above as the	**Where there	is Certificate.	ility for the design
Signature	Date		Name (CAPITALS)		De	signer No. 1
Signature	Date		Name (CAPITALS)		De	signer No. 2**
FOR CONSTRUCTION I/We being the person(s) responsible for the construction of the electrical installation (as indicated by my/our signatures below), particulars of which are described above, having exercised reasonable skill and care when carrying out the construction, hereby CERTIFY that the construction work of which I/we have been responsible is, to the best of my/our knowledge and belief, in accordance with BS 7671:2008 amended to						
Details of departures from BS 7671 (re	gulation 120.3 and 133.5	i)				
The extent of liability of the signator	v or signatories is limit	ed to the w	ork described above as the	subject of th	is Certificate	
For the CONSTRUCTION of the insta	Illation:			oubject of all	o oonnoute.	
Signature	Date		Name (CAPITALS)		Co	nstructor
FOR INSPECTION & TESTING I/We being the person(s) responsible which are described above, having ex which I/we have been responsible is, except for departures, if any, detailed a	i or the inspection & testin ercised reasonable skill o the best of my/our kno s follows:	ng of the ele and care wh wledge and	ectrical installation (as indicat een carrying out the inspection belief, in accordance with B	ed by my/our n & testing, h S 7671:2008 a	signatures below ereby CERTIFY t amended to), particulars of hat the work of (date)
Details of departures from BS 7671 (re	gulation 120.3 and 133.5	i)				
The extent of liability of the signator	y or signatories is limit	ed to the w	ork described above as the	subject of th	is Certificate.	
For the INSPECTION & TESTING of	he installation:					
Signature	Date		Name (CAPITALS)		Co	nstructor
NEXT INSPECTION						
I/We the designer(s), recommend that this i	nstallation is further inspecte	ed and tested	after an interval of not more than		. years / months	

Annex C – Electrical Installation Certificate

	~ -1	
	J / N	
FIU.	~ / ! !	
116	J/ U	

Name		C	ompany		
Address					
		P	ostcode	Tel:	
Designer (No. 2)					
Name		C	ompany		
Address					
		P	ostcode	Tel:	
Constructor					
Name		C	ompany		
Address					
		P	ostcode	Tel:	
Inspector					
Name		C	ompany		
Address					
		P	ostcode	Tel:	
SUPPLY CHARACTER	ISTICS AND EARTI	HING ARRAN	GEMENTS	Tick b	oxes and enter details
Earthing arrangements	Number and type of I	ive conductors	Nature and type	of supply parameter	s Supply protect
TN-S	a.c.	d.c.	Nominal voltage, U	/ U ₀ ⁽¹⁾	V BS (EN)
TN-C-S	1-phase, 2-wire	2-wire	Nominal frequency,	f ⁽¹⁾	Hz
TN-C	2-phase, 3-wire	3-wire	External loop imper	dance. Ze ⁽²⁾	κα Type
IT 🗌	Confirmation of supply	polarity	Note: (1) by enquiry. (2)	by enquiry or measurement	Rated current
PARTICULARS OF INS	STALLATION REFE	RRED TO IN T	HE CERTIFICA	TE Tick b	oxes and enter details
PARTICULARS OF INS Means of earthing	STALLATION REFE	RRED TO IN T	HE CERTIFICA Maximum	TE Tick b demand kVA / Amps (de	oxes and enter details
PARTICULARS OF INS Means of earthing Distributor's facility	TALLATION REFE	RRED TO IN T num demand (load Details of	THE CERTIFICA Maximum) installation earth e	TE Tick b demand 	boxes and enter details elete as appropriate) cable)
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode	TALLATION REFE	IN TO IN T In the mand (load Details of tape, etc.)	HE CERTIFICA Maximum installation earth e Locatio	TE Tick to demand 	voxes and enter details elete as appropriate) <i>cable</i>) ectrode resistance to ea
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode	Maxim Type (e.g. rod(s),	RRED TO IN T num demand (load Details of tape, etc.)	HE CERTIFICAT Maximum) installation earth e Locatio	TE Tick t demand kVA / Amps (de lectrode (where appli n EI	oxes and enter details elete as appropriate) cable) ectrode resistance to ea
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors	Maxim Type (e.g. rod(s),	RRED TO IN T num demand (load Details of tape, etc.)	HE CERTIFICAT Maximum) installation earth e Locatio	TE Tick t demand .kVA / Amps (de lectrode (where appli n El	exposes and enter details lete as appropriate) cable) ectrode resistance to er
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective	Maxim Type (e.g. rod(s), material	RRED TO IN T	HE CERTIFICA Maximum) installation earth e Locatio	IE Tick t demand kVA / Amps (de lectrode (where appli n El 	ooxes and enter details lete as appropriate) cable) ectrode resistance to ex- pontinuity and connection
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Main protective bonding conductors	Maxim Type (e.g. rod(s), material	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand kVA / Amps (de kVA / Amps (de m	ooxes and enter details lete as appropriate) cable) ectrode resistance to ex- continuity and connection ontinuity and connection
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas	Maxim Type (e.g. rod(s), material s service To o	RRED TO IN T	HE CERTIFICA Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to ex- pontinuity and connection pontinuity and connection
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread	Maxim Type (e.g. rod(s), material s service To a	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) <i>cable</i>) ectrode resistance to ex- continuity and connection pontinuity and connection
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles	Maxim Type (e.g. rod(s), material material s service To the	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to ex- pontinuity and connection pontinuity and connection ge rating
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location	Maxim Type (e.g. rod(s), material s service To o ker	RRED TO IN T hum demand (load Details of tape, etc.)	HE CERTIFICAT Maximum installation earth e Locatio	Tick t demand	excess and enter details lete as appropriate) <i>cable</i>) ectrode resistance to ex- pontinuity and connection ontinuity and connection ge rating
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location Rated residual operating current	Maxim Type (e.g. rod(s), material s service To t ker	RRED TO IN T um demand (loac Details of tape, etc.)	HE CERTIFICAT Maximum installation earth e Locatio	Tick t demand	exposes and enter details lete as appropriate) cable) ectrode resistance to ex- pontinuity and connection ontinuity and connection ontinuity and connection ge rating
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	TALLATION REFEI	RRED TO IN T	HE CERTIFICAT Maximum) installation earth e Locatio 	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to er ontinuity and connection ontinuity and connection ontinuity and connection ge rating
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	TALLATION REFEI	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand kVA / Amps (de electrode (where appling n n El mm ² C mm A ms (at I _{Δn}) s a n (in the case of an a (in the case of an a	excess and enter details lete as appropriate) cable) ectrode resistance to er ontinuity and connection pontinuity and connection pontinuity and connection ge rating able only where an RCD is su and crout-breaker) ddition or alteration see
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	TALLATION REFEI	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to er ontinuity and connection ontinuity and connection ontinuity and connection ge rating ge rating cable only where an RCD is su aim circuit-breaker)
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductor Main protective bonding conductors To incoming water and/or gas Main switch or circuit-breal BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	TALLATION REFEI	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to er cable) continuity and connection pontinuity and connection pontinuity and connection ge rating able only where an RCD is su able only where an RCD is su able only where an RCD is su
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductors To incoming water and/or gas Main switch or circuit-bread BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	STALLATION REFEI Maxim Type (e.g. rod(s), s material material s service To r ker INSTALLATION	RRED TO IN T	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand	excess and enter details lete as appropriate) cable) ectrode resistance to er cable) ontinuity and connection ontinuity and connection ontinuity and connection ge rating able only where an RCD is su able only where an RCD is su able only where an RCD is su
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductors To incoming water and/or gas Main switch or circuit-breal BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING	STALLATION REFEI Maxim Type (e.g. rod(s), s material material s service To rent l∆n INSTALLATION	RRED TO IN T	HE CERTIFICAT Maximum) installation earth e Locatio	TE Tick t demand kVA / Amps (de kVA / Amps (de lectrode (where appling) n EI	exposes and enter details lete as appropriate) cable) ectrode resistance to er continuity and connection pontinuity and connection pontinuity and connection ge rating
PARTICULARS OF INS Means of earthing Distributor's facility Installation earth electrode Main protective conductors Earthing conductors To incorning water and/or gas Main switch or circuit-breal BS, type and no. of poles Location Rated residual operating curr COMMENTS ON EXISTING SCHEDULES	STALLATION REFEI Maxim Type (e.g. rod(s), material material s service To t ker INSTALLATION	RRED TO IN T Itum demand (loac Details of tape, etc.)	HE CERTIFICAT Maximum installation earth e Locatio	TE Tick t demand kVA / Amps (de kVA / Amps (de lectrode (where appling) n EI	exposes and enter details lete as appropriate) cable) ectrode resistance to er pontinuity and connection ontinuity and connection ontinuity and connection ge rating

Annex C – Schedule of Inspections

Methods of protection against electric shock	Prevention of mutual detrimental influence
Both basic and fault protection:	(a) Proximity of non-electrical services and other influe
(i) SELV	(b) Segregation of Band I and Band II circuits or use of
(ii) PELV	Band II insulation
(iii) Double insulation	(c) Segregation of safety circuits
(iv) Reinforced insulation	Identification
Basic protection:	 (a) Presence of diagrams, instructions, circuit charts a similar information
(i) Insulation of live parts	(b) Presence of danger notices and other warning not
(ii) Barriers or enclosures	(c) Labelling of protective devices, switches and termi
(iii) Obstacles	(d) Identification of conductors
(iv) Placing out of reach	Cable and conductors
Fault protection:	Selection of conductors for current-carrying canacity and
(i) Automatic disconnection of supply:	voltage drop
Presence of earthing conductor	Erection methods
Presence of circuit protective conductors	Routing of cables in prescribed zones
Presence of protective bonding conductors	Cables incorporating earthed armour or sheath, or run wit
Presence of supplementary bonding conductors	earthed wiring system, or otherwise adequately protected nails, screws and the like
Presence of earthing arrangements for combined protective	Additional protection provided by 30 mA RCD for cables of
and functional purposes	in walls (where required in premises not under the superv
Presence of adequate arrangements for other sources,	
	Presence of fire barriers, suitable seals and protection and
Chains and patting of protective and manifering devices	thermal effects
(for fault and/or overcurrent protection)	General
(ii) Non-conducting location:	Presence and correct location of appropriate devices for i
Absence of protective conductors	and switching
(iii) Earth-free local equipotential bonding:	Adequacy of access to switchgear and other equipment
Presence of earth-free local equipotential bonding	Particular protective measures for special installations an locations
(iv) Electrical separation:	Connection of single-pole devices for protection or switch
Provided for one item of current-using equipment	Conductors only
Provided for more than one item of current-using equipment	Presence of undervoltage protective devices
Additional protection:	Selection of equipment and protective measures appropri
Presence of residual current device(s)	external influences
Presence of supplementary bonding conductors	Selection of appropriate functional switching devices
Inspected by	Date
NOTES	

Annex C – Schedule of Test Results

Fig 39

Annex D – Abbreviated KWh/kWp (Kk) Tables

Due to space restrictions, these tables do not show the full range of orientation and inclination options within each of the postcode zones. The complete data tables are available on the MCS website to download.

Each table shows annual kWh / kWp output per annum for each zone. The table is divided into 5° increments for orientation, and 1° increments for inclination (pitch).

When surveying a site the survey results shall be rounded up or down according to standard convention.

For orientation the number shall be rounded up or down to the nearest 5° as defined in the examples below:

Measured orientation –	13° = requires rounding up to 15° 12° = requires rounding down to 10°
	12.5 = requires rounding up to 15° 12.4 = requires rounding down to 10°

For inclination (pitch) the number shall be rounded up or down to the nearest 1° as defined in the examples below:

Measured inclination –	35.5° = requires rounding up to 36°
	35.4° = requires rounding down to 35°

For ease of reference the tables have been shaded to indicate optimum and minimum potential outputs

	Orientation (variation from south)													
		0	5	10	15	20	25	30	35	40	45			
	0	828	828	828	828	828	828	828	828	828	828			
	1	835	835	835	835	835	835	834	834	833	833			
	2	843	843	843	842	842	841	841	840	839	838			
	3	850	850	850	849	849	848	847	846	845	843			
	4	857	857	857	856	855	854	853	852	850	848			
	5	864	864	864	863	862	861	859	857	855	853			
	6	871	871	870	869	868	867	865	863	861	858			
	7	878	877	877	876	874	873	871	868	866	862			
	8	884	884	883	882	880	879	876	873	870	867			
	9	890	890	889	888	886	884	882	878	875	871			
	10	896	896	895	894	892	890	887	883	880	875			
	11	902	902	901	900	898	895	892	888	884	879			
	12	908	908	907	905	903	900	897	893	888	883			
	13	914	913	912	910	908	905	901	897	892	887			
	14	919	919	917	916	913	910	906	901	896	890			
(ial)	15	924	924	922	920	918	914	910	905	900	894			
out	16	929	929	927	925	922	919	914	909	903	897			
riz	17	934	933	932	930	927	923	918	913	907	900			
h	18	938	938	936	934	931	927	922	917	910	903			
E	19	943	942	941	938	935	931	926	920	913	906			
-F	20	947	946	945	942	939	935	929	923	916	908			
tio	21	951	950	949	946	943	938	933	926	919	911			
riat	22	954	954	952	950	946	941	936	929	922	913			
(va	23	958	957	956	953	949	944	939	932	924	915			
u	24	961	961	959	956	952	947	941	934	926	917			
ati	25	964	964	962	959	955	950	944	937	928	919			
clin	26	967	967	965	962	958	953	946	939	930	921			
Ĕ	2/	970	969	968	965	960	955	948	941	932	922			
	28	972	972	970	967	962	957	950	942	933	923			
	29	975	974	972	969	964	959	952	944	935	924			
	21	070	079	974	971	900	900	955	945	950	925			
	22	080	070	077	07/	908	902	955	047	027	920			
	22	082	0.001	070	075	909	903	950	947	038	920			
	33	083	082	0	975	071	965	957	0/18	038	027			
	35	987	982	980	970	971	966	958	948	938	927			
	36	98/	98/	981	978	972	966	958	9/9	938	927			
	37	985	984	982	978	973	966	958	949	938	926			
	38	985	984	982	978	973	966	958	949	938	925			
	39	985	984	982	978	973	966	958	948	937	925			
	40	985	984	982	978	973	966	957	947	936	924			
	41	984	984	981	977	972	965	956	946	935	922			
	42	984	983	981	977	971	964	955	945	934	921			
	43	983	982	980	976	970	963	954	944	932	919			
	44	982	981	979	975	969	962	953	943	931	918			
	45	980	980	977	973	967	960	951	941	929	916			

Zone 1

zone z

		Orientation (variation East or West from South)												
		0	5	10	15	20	25	30	35	40	45			
	0	938	938	938	938	938	938	938	938	938	938			
	1	947	947	947	946	946	946	945	945	944	944			
	2	956	956	956	955	955	954	953	952	951	950			
	3	965	965	964	964	963	962	961	960	958	957			
	4	974	973	973	972	971	970	969	967	965	963			
	5	982	982	981	981	979	978	976	974	971	969			
	6	990	990	990	989	987	985	983	980	978	974			
	7	999	998	998	996	995	993	990	987	984	980			
	8	1006	1006	1005	1004	1002	1000	997	993	989	985			
	9	1014	1014	1013	1011	1009	1007	1003	1000	995	990			
	10	1022	1021	1020	1019	1016	1013	1010	1006	1001	996			
	11	1029	1029	1027	1026	1023	1020	1016	1011	1006	1000			
	12	1036	1035	1034	1032	1030	1026	1022	1017	1011	1005			
	13	1043	1042	1041	1039	1036	1032	1028	1022	1016	1010			
_	14	1049	1049	1047	1045	1042	1038	1033	1028	1021	1014			
tal)	15	1056	1055	1054	1051	1048	1044	1039	1033	1026	1018			
uo	16	1062	1061	1060	1057	1054	1049	1044	1037	1030	1022			
oriz	1/	1068	1067	1065	1063	1059	1054	1049	1042	1035	1026			
Ĕ	18	1073	1073	1071	1068	1064	1059	1053	1046	1038	1030			
u.	19	1078	1078	1076	1073	1069	1064	1058	1051	1042	1033			
nfi	20	1084	1083	1081	1078	1074	1059	1062	1055	1046	1036			
tio	21	1002	1088	1080	1083	1079	1073	1000	1058	1049	1039			
aria	22	1095	1092	1090	1007	1005	1077	1070	1065	1055	1042			
ž	23	1102	1101	1095	1091	1007	1081	1074	1069	1050	1043			
ion	24	1102	1101	1103	1095	1091	1089	1000	1008	1058	1047			
nat	26	1109	1103	1105	1103	1097	1000	1083	1071	1063	1052			
il	27	1112	1112	1109	1105	1101	1094	1086	1076	1066	1053			
-	28	1115	1115	1112	1109	1103	1096	1088	1078	1067	1055			
	29	1118	1118	1115	1111	1106	1099	1090	1081	1069	1057			
	30	1121	1120	1118	1114	1108	1101	1092	1082	1071	1058			
	31	1123	1122	1120	1116	1110	1103	1094	1084	1072	1059			
	32	1125	1124	1122	1118	1112	1105	1096	1085	1073	1060			
	33	1127	1126	1124	1119	1114	1106	1097	1086	1074	1060			
	34	1128	1128	1125	1121	1115	1107	1098	1087	1074	1060			
	35	1130	1129	1126	1122	1116	1108	1098	1087	1075	1060			
	36	1131	1130	1127	1123	1117	1109	1099	1088	1075	1061			
	37	1131	1130	1128	1123	1117	1109	1099	1088	1075	1060			
	38	1132	1131	1128	1124	1117	1109	1099	1088	1074	1059			
	39	1132	1131	1128	1124	1117	1109	1099	1087	1074	1059			
	40	1132	1131	1128	1123	1117	1109	1099	1087	1073	1058			
	41	1131	1130	1128	1123	1116	1108	1098	1086	1072	1057			
	42	1131	1130	1127	1122	1116	1107	1097	1085	1070	1055			
	43	1130	1129	1126	1121	1114	1106	1095	1083	1069	1053			
	44	1128	1127	1125	1120	1113	1104	1094	1081	1067	1051			
	45	1127	1126	1123	1118	1111	1103	1092	1080	1065	1049			

	Orientation (variation East or West from South)											
		0	5	10	15	20	25	30	35	40	45	
	0	857	857	857	857	857	857	857	857	857	857	
	1	865	865	864	864	864	864	864	863	863	862	
	2	872	872	872	872	872	871	870	870	869	868	
	3	880	880	880	879	879	878	877	876	875	873	
	4	888	888	887	887	886	885	883	882	880	878	
	5	895	895	894	894	893	891	890	888	886	884	
	6	902	902	901	901	899	898	896	894	891	888	
	7	909	909	908	907	906	904	902	899	897	893	
	8	916	916	915	914	912	910	908	905	902	898	
	9	923	922	922	920	918	916	913	910	907	902	
	10	929	929	928	926	924	922	919	915	911	907	
	11	935	935	934	932	930	928	924	920	916	911	
	12	941	941	940	938	936	933	929	925	920	915	
	13	947	947	946	944	941	938	934	930	925	919	
	14	953	952	951	949	947	943	939	934	929	923	
al)	15	958	958	956	954	952	948	944	939	933	926	
bt	16	963	963	962	959	956	953	948	943	937	930	
riz	17	968	968	967	964	961	957	952	947	940	933	
РЧ	18	973	973	971	969	966	961	956	950	944	936	
E	19	978	977	976	973	970	966	960	954	947	939	
Ę	20	982	982	980	977	974	969	964	957	950	942	
ion	21	986	986	984	981	978	973	967	961	953	944	
riat	22	990	990	988	985	981	977	971	964	956	947	
Vai	23	994	993	992	989	985	980	974	966	958	949	
LO LO	24	997	997	995	992	988	983	977	969	961	951	
atio	25	1001	1000	998	995	991	986	979	972	963	953	
lin	26	1004	1003	1001	998	994	988	982	974	965	955	
<u>n</u>	27	1007	1006	1004	1001	996	991	984	976	967	956	
	28	1009	1009	1007	1003	999	993	986	978	968	958	
	29	1012	1011	1009	1006	1001	995	988	979	970	959	
	30	1014	1013	1011	1008	1003	997	989	981	9/1	960	
	22	1010	1015	1015	1011	1005	1000	991	902	972	901	
	22	1017	1017	1015	1011	1000	1000	992	905	975	901	
	24	1019	1010	1010	1012	1007	1001	993	004	975	901	
	25	1020	1019	1017	1013	1008	1002	001	082	974	902	
	36	1021	1020	1010	1014	1009	1002	005	085	07/	962	
	30	1022	1021	1019	1015	1010	1003	005	085	07/	961	
	38	1022	1022	1019	1015	1010	1003	995	985	973	960	
	39	1023	1022	1015	1016	1010	1003	994	984	973	960	
	40	1023	1022	1019	1015	1010	1003	994	983	972	959	
	40	1023	1022	1019	1015	1009	1002	993	983	971	957	
	42	1021	1021	1018	1014	1008	1001	992	981	969	956	
	43	1020	1020	1017	1013	1007	1000	991	980	968	954	
	44	1019	1018	1016	1012	1006	998	989	979	966	953	
	45	1018	1017	1015	1010	1004	997	988	977	964	951	

Zone	3
------	---

Zone	4
------	---

		Orientation (variation East or West from South)												
		0	5	10	15	20	25	30	35	40	45			
	0	907	907	907	907	907	907	907	907	907	907			
	1	916	916	916	915	915	915	914	914	914	913			
	2	924	924	924	924	923	923	922	921	920	919			
	3	933	933	933	932	931	930	929	928	927	925			
	4	941	941	941	940	939	938	937	935	933	931			
	5	949	949	949	948	947	945	944	942	939	937			
	6	957	957	957	956	954	953	950	948	945	942			
	7	965	965	964	963	962	960	957	954	951	948			
	8	973	972	972	970	969	966	964	961	957	953			
	9	980	980	979	977	976	973	970	966	962	958			
	10	987	987	986	984	982	979	976	972	968	963			
	11	994	994	993	991	989	986	982	978	973	968			
	12	1001	1000	999	998	995	992	988	983	978	9/2			
	13	1007	1007	1006	1004	1001	998	993	988	983	9//			
_	14	1014	1013	1012	1010	1007	1003	999	994	988	981			
tal)	15	1020	1019	1018	1016	1013	1009	1004	998	992	985			
lon	10	1025	1025	1024	1021	1018	1014	1009	1003	996	989			
oriz	1/	1031	1031	1029	1027	1023	1019	1014	1007	1001	993			
Ĕ	10	1030	1030	1034	1032	1028	1024	1018	1012	1004	1000			
ron	20	1041	1041	1039	1041	1022	1028	1025	1010	1012	1000			
'n	20	1040	1040	1044	1041	1038	1035	1027	1020	1012	1005			
atio	21	1051	1055	1049	1040	1042	10/1	1031	1025	1013	1000			
aria	23	1060	1059	1055	1054	1050	1041	1034	1027	1010	1011			
ž	24	1064	1063	1061	1058	1054	1048	1041	1033	1021	1011			
ior	25	1067	1067	1065	1062	1057	1051	1044	1036	1027	1016			
nat	26	1071	1070	1068	1065	1060	1054	1047	1039	1029	1018			
JCli	27	1074	1073	1071	1068	1063	1057	1050	1041	1031	1020			
-	28	1077	1076	1074	1071	1066	1060	1052	1043	1033	1022			
	29	1080	1079	1077	1073	1068	1062	1054	1045	1035	1023			
	30	1082	1081	1079	1076	1071	1064	1056	1047	1036	1025			
	31	1084	1084	1081	1078	1073	1066	1058	1048	1038	1026			
	32	1086	1086	1083	1080	1074	1068	1059	1050	1039	1027			
	33	1088	1087	1085	1081	1076	1069	1061	1051	1040	1027			
	34	1089	1089	1086	1082	1077	1070	1062	1052	1040	1027			
	35	1091	1090	1087	1084	1078	1071	1062	1052	1041	1028			
	36	1091	1091	1088	1084	1079	1072	1063	1053	1041	1028			
	37	1092	1091	1089	1085	1079	1072	1063	1053	1041	1027			
	38	1093	1092	1089	1085	1080	1072	1063	1053	1041	1027			
	39	1093	1092	1089	1085	1080	1072	1063	1052	1040	1026			
	40	1093	1092	1089	1085	1079	1072	1063	1052	1039	1025			
	41	1092	1091	1089	1085	1079	1071	1062	1051	1038	1024			
	42	1092	1091	1088	1084	1078	1070	1061	1050	1037	1023			
	43	1091	1090	1087	1083	1077	1069	1060	1049	1036	1021			
	44	1089	1089	1086	1082	1076	1068	1058	1047	1034	1020			
	45	1088	1087	1085	1080	1074	1066	1057	1045	1032	1018			

		Orientation (variation East or West from South)											
		0	5	10	15	20	25	30	35	40	45		
	0	803	803	803	803	803	803	803	803	803	803		
	1	809	809	809	809	809	809	808	808	808	807		
	2	816	816	816	816	816	815	814	814	813	812		
	3	823	823	823	823	822	821	820	819	818	817		
	4	830	830	830	829	828	827	826	825	823	822		
	5	837	837	836	835	835	833	832	830	828	826		
	6	843	843	842	842	841	839	838	836	833	831		
	7	849	849	849	848	846	845	843	841	838	835		
	8	855	855	855	854	852	850	848	846	843	839		
	9	861	861	860	859	858	856	853	850	847	843		
	10	867	867	866	865	863	861	858	855	851	847		
	11	873	872	872	870	868	866	863	859	856	851		
	12	878	878	877	875	873	871	868	864	860	855		
	13	883	883	882	880	878	875	872	868	863	858		
	14	888	888	887	885	883	880	876	872	867	862		
(ial)	15	893	893	892	890	887	884	880	876	871	865		
out	16	898	898	896	894	892	888	884	880	874	868		
oriz	17	902	902	901	899	896	892	888	883	877	871		
h	18	907	906	905	903	900	896	892	886	880	874		
ш	19	911	910	909	907	904	900	895	890	883	876		
fr	20	915	914	913	910	907	903	898	893	886	879		
tion	21	918	918	916	914	911	907	901	895	889	881		
riat	22	922	921	920	917	914	910	904	898	891	883		
(va	23	925	925	923	921	91/	913	907	901	893	885		
u	24	928	928	926	923	920	915	910	903	896	887		
ati	25	931	931	929	926	923	918	912	905	897	889		
clin	26	934	933	932	929	925	920	914	907	899	890		
Ē	27	936	936	934	931	927	922	916	909	901	892		
	28	939	938	936	933	929	924	918	910	902	893		
	29	941	940	938	935	931	920	919	912	903	894 80E		
	21	945	942	940	020	955	927	921	915	904	095 005		
	22	944	944 0/5	0/13	939	036	929	022	015	905	895		
	32	9/7	9/6	943 977	9/1	937	931	92/	916	906	896		
	34	947	940	944	9/12	937	931	924	916	907	896		
	35	940	948	946	943	938	932	925	916	907	896		
	36	949	949	947	943	938	932	925	916	907	896		
	37	950	949	947	943	939	933	925	916	906	895		
	38	950	949	947	944	939	932	925	916	906	895		
	39	950	949	947	943	939	932	925	916	905	894		
	40	949	949	947	943	938	932	924	915	904	893		
	41	949	948	946	942	937	931	923	914	903	892		
	42	948	948	945	942	937	930	922	913	902	890		
	43	947	947	944	941	936	929	921	912	901	889		
	44	946	945	943	940	934	928	920	910	899	887		
	45	945	944	942	938	933	926	918	908	897	885		

Zone 5W

		Orientation (variation East or West from South)										
		0	5	10	15	20	25	30	35	40	45	
	0	820	820	820	820	820	820	820	820	820	820	
	1	827	827	826	826	826	826	826	825	825	824	
	2	834	834	834	833	833	832	832	831	830	830	
	3	841	841	841	840	840	839	838	837	836	835	
	4	848	848	848	847	846	845	844	843	841	839	
	5	855	855	854	854	853	851	850	848	846	844	
	6	861	861	861	860	859	857	856	854	851	849	
	7	868	868	867	866	865	863	861	859	856	853	
	8	874	874	873	872	871	869	867	864	861	857	
	9	880	880	879	878	877	874	872	869	865	862	
	10	886	886	885	884	882	880	877	874	870	866	
	11	892	892	891	889	888	885	882	878	874	870	
	12	898	897	896	895	893	890	887	883	878	873	
	13	903	903	902	900	898	895	891	887	882	877	
	14	908	908	907	905	903	899	896	891	886	880	
(Ial)	15	913	913	912	910	907	904	900	895	890	884	
ont	16	918	918	916	915	912	908	904	899	893	887	
riz	17	923	922	921	919	916	912	908	903	897	890	
h	18	927	927	925	923	920	916	912	906	900	893	
E C	19	931	931	930	927	924	920	915	909	903	896	
, tr	20	935	935	933	931	928	924	918	912	906	898	
tior	21	939	939	937	935	931	927	922	915	908	900	
riat	22	943	942	941	938	935	930	925	918	911	903	
(va	23	946	946	944	941	938	933	927	921	913	905	
S	24	949	949	947	944	941	936	930	923	915	907	
atio	25	952	952	950	947	943	939	932	925	917	908	
lin	26	955	955	953	950	946	941	935	927	919	910	
Ľ	27	958	957	955	952	948	943	937	929	921	911	
	28	960	959	958	955	950	945	939	931	922	912	
	29	962	962	960	957	952	947	940	932	923	914	
	30	964	964	962	959	954	948	942	934	924	914	
	31	966	965	963	960	950	950	943	935	925	915	
	32	967	907	905	901	957	951	944	930	920	915	
	33	909	908	900	903	958	952	945	930	927	910	
	25	071	909	907	904	959	955	945	957	927	910	
	26	971	970	900	904	959	955	940	957	927	910	
	27	072	071	900	905	960	954	940	027	927	915	
	20	072	071	909	905	960	954	940	037	927	913	
	30	072	071	060	965	960	954	940	936	920	012	
	40	971	971	968	965	960	953	9/5	935	925	912	
	40	071	070	968	964	950	052	943	03/	073	011	
	41	970	969	967	963	958	951	9/12	934	923	910	
	42	969	968	966	962	957	950	9/12	933	921	908	
	43	968	967	965	961	956	949	940	930	919	906	
	45	967	966	964	960	954	947	939	929	917	905	

Zone 5

	Orientation (variation East or West from South)												
		0	5	10	15	20	25	30	35	40	45		
	0	789	789	789	789	789	789	789	789	789	789		
	1	796	796	796	795	795	795	795	794	794	794		
	2	803	803	802	802	802	801	801	800	799	799		
	3	810	809	809	809	808	808	807	806	805	803		
	4	816	816	816	815	815	814	812	811	810	808		
	5	823	823	822	822	821	819	818	816	815	813		
	6	829	829	828	828	827	825	824	822	819	817		
	7	835	835	835	834	832	831	829	827	824	821		
	8	841	841	841	840	838	836	834	832	829	825		
	9	847	847	846	845	844	842	839	836	833	830		
	10	853	853	852	851	849	847	844	841	837	833		
	11	859	858	857	856	854	852	849	845	842	837		
	12	864	864	863	861	859	857	853	850	840	841		
	13	869	869	808	800	864	861	858	854	849	844		
~	14	874 970	874	8/3 070	8/1 076	809 070	800	80Z	020	053	040 0E1		
Ital	15	079	0/9	0/0	070	075	070 074	000 970	00Z 866	860 860	001		
zon	10	004	000	002	000	0/0	074	070	860	000	054		
ori	10	000 907	000	007 901	000	002	0/0	074	009 972	005 866	860		
ц Ч	10	092 807	896	805	803	800	886	070 991	876	860	862		
ror	20	901	900	895	896	890	880	88/	879	872	865		
u f	20	904	904	902	900	897	893	887	881	875	867		
atio	22	908	907	906	903	900	896	890	884	877	869		
ari	23	911	911	909	907	903	899	893	887	880	872		
2	24	914	914	912	910	906	901	896	889	882	873		
tio	25	917	917	915	912	909	904	898	891	884	875		
nat	26	920	919	918	915	911	906	900	893	885	877		
ncli	27	922	922	920	917	913	908	902	895	887	878		
-	28	925	924	922	920	916	910	904	897	888	879		
	29	927	926	925	922	917	912	906	898	890	880		
	30	929	928	926	923	919	914	907	900	891	881		
	31	931	930	928	925	921	915	908	901	892	882		
	32	932	931	930	926	922	916	910	902	892	882		
	33	933	933	931	928	923	917	910	902	893	883		
	34	935	934	932	929	924	918	911	903	893	883		
	35	935	935	933	929	925	919	912	903	894	883		
	36	936	935	933	930	925	919	912	903	894	883		
	37	937	936	934	930	926	919	912	903	893	882		
	38	937	936	934	931	926	919	912	903	893	882		
	39	937	936	934	931	926	919	912	903	892	881		
	40	937	936	934	930	925	919	911	902	892	880		
	41	936	936	933	930	925	918	911	901	891	879		
	42	936	935	933	929	924	918	910	900	890	878		
	43	935	934	932	928	923	917	909	899	888	8/6		
	44	934	933	931	927	922	915	907	898	887	875		
	45	933	932	930	926	921	914	906	896	885	8/3		

Zone 6

Zone	7W

		Orientation (variation from south)												
		0	5	10	15	20	25	30	35	40	45			
	0	779	779	779	779	779	779	779	779	779	779			
	1	786	786	786	786	786	785	785	785	784	784			
	2	793	793	793	793	792	792	791	791	790	789			
	3	800	800	800	799	799	798	797	796	795	794			
	4	807	807	807	806	805	804	803	802	800	799			
	5	814	814	813	812	812	810	809	807	805	803			
	6	820	820	820	819	818	816	815	813	810	808			
	7	827	826	826	825	824	822	820	818	815	812			
	8	833	833	832	831	829	828	825	823	820	817			
	9	839	839	838	837	835	833	831	828	824	821			
	10	845	844	844	842	841	838	836	832	829	825			
	11	850	850	849	848	846	843	841	837	833	829			
	12	856	856	855	853	851	848	845	842	837	833			
	13	861	861	860	858	856	853	850	846	841	836			
	14	866	866	865	863	861	858	854	850	845	840			
tal)	15	871	871	870	868	866	862	858	854	849	843			
out	16	876	876	875	873	870	867	863	858	852	846			
oriz	17	881	881	879	877	874	871	867	861	856	849			
Å	18	885	885	884	882	879	875	870	865	859	852			
μo	19	890	889	888	886	882	879	8/4	868	862	855			
ц.	20	894	893	892	889	886	882	8//	8/2	865	858			
tio	21	898	897	896	893	890	886	881	8/5	868	860			
ria	22	901	901	899	897	893	889	884	8//	870	862			
(va	23	905	904	903	900	897	892	887	880	8/3	865			
u	24	908	907	906	903	900	895	889	883	8/5	867			
ati	25	911	911	909	906	902	898	892	885	8//	869			
clin	26	914	913	912	909	905	900	894	887	8/9	870			
Ē	2/	917	916	914	912	908	902	896	889	881	8/2			
	28	919	919	917	914	910	905	000	891	001	071			
	29	921	921	021	910	912	907	900	095	004	074			
	21	924	925	921	910	914 015	908	902	094 805	886	876			
	22	027	925	025	021	017	011	903	806	887	870			
	32	929	928	925	923	918	912	905	890	888	877			
	34	930	920	927	92/	919	913	906	898	888	878			
	35	931	930	928	925	920	914	907	898	889	878			
	36	932	931	929	926	921	915	907	899	889	878			
	37	932	932	930	926	921	915	908	899	889	878			
	38	933	932	930	926	922	915	908	899	888	877			
	39	933	932	930	927	922	915	907	898	888	877			
	40	933	932	930	926	921	915	907	898	888	876			
	41	933	932	930	926	921	915	907	897	887	875			
	42	932	932	929	926	920	914	906	896	886	874			
	43	932	931	929	925	920	913	905	895	885	872			
	44	931	930	928	924	919	912	904	894	883	871			
	45	930	929	927	923	918	911	902	893	882	869			

	Orientation (variation East or West from South)											
		0	5	10	15	20	25	30	35	40	45	
	0	735	735	735	735	735	735	735	735	735	735	
	1	741	741	741	741	741	740	740	740	740	739	
	2	747	747	747	747	746	746	746	745	744	744	
	3	753	753	753	753	752	752	751	750	749	748	
	4	759	759	759	759	758	757	756	755	753	752	
	5	765	765	765	764	763	762	761	760	758	756	
	6	771	771	770	770	769	767	766	764	762	760	
	7	776	776	776	775	774	772	771	769	766	764	
	8	782	782	781	780	779	777	775	773	771	768	
	9	787	787	786	785	784	782	780	777	774	771	
	10	792	792	791	790	789	787	784	781	778	775	
	11	797	797	796	795	793	791	789	785	782	778	
	12	802	802	801	800	798	795	793	789	786	781	
	13	807	806	806	804	802	800	797	793	789	785	
	14	811	811	810	808	806	804	800	797	792	787	
(je	15	816	815	814	813	810	808	804	800	795	790	
nta	16	820	819	818	817	814	811	808	803	798	793	
izo	17	824	823	822	820	818	815	811	806	801	796	
hor	18	827	827	826	824	821	818	814	809	804	798	
E	19	831	831	829	828	825	821	817	812	807	800	
fro	20	835	834	833	831	828	824	820	815	809	803	
u	21	838	837	836	834	831	827	823	818	812	805	
iati	22	841	841	839	837	834	830	825	820	814	807	
/ari	23	844	843	842	840	837	833	828	822	816	809	
-) -	24	847	846	845	842	839	835	830	824	818	810	
tio	25	849	849	847	845	842	837	832	826	819	812	
ina	26	852	851	850	847	844	839	834	828	821	813	
ncl	27	854	853	852	849	846	841	836	830	822	814	
-	28	856	855	854	851	848	843	837	831	823	815	
	29	858	857	856	853	849	845	839	832	825	816	
	30	859	859	857	855	851	846	840	833	825	817	
	31	861	860	859	856	852	847	841	834	826	817	
	32	862	862	860	857	853	848	842	835	827	818	
	33	863	863	861	858	854	849	843	835	827	818	
	34	864	864	862	859	855	850	843	836	827	818	
	35	865	864	863	860	855	850	844	836	827	818	
	36	865	865	863	860	856	850	844	836	827	818	
	37	866	865	863	860	856	850	844	836	827	817	
	38	866	865	863	860	856	850	844	836	827	817	
	39	866	865	863	860	856	850	843	835	826	816	
	40	866	865	863	860	855	850	843	835	825	815	
	41	865	865	863	859	855	849	842	834	824	814	
	42	865	864	862	859	854	848	841	833	823	813	
	43	864	863	861	858	853	847	840	832	822	811	
	44	863	862	860	857	852	846	839	830	821	810	
	45	862	861	859	855	851	845	837	829	819	808	

Zone 7E

Zone	8S
------	----

		Orientation (variation East or West from South)												
		0	5	10	15	20	25	30	35	40	45			
	0	722	722	722	722	722	722	722	722	722	722			
	1	728	728	728	728	728	728	727	727	727	726			
	2	735	735	735	734	734	734	733	732	732	731			
	3	741	741	741	741	740	739	739	738	737	735			
	4	748	748	747	747	746	745	744	743	742	740			
	5	754	754	753	753	752	751	750	748	746	744			
	6	760	760	760	759	758	756	755	753	751	749			
	7	766	766	765	765	763	762	760	758	755	753			
	8	//2	//2	//1	//0	769	/6/	765	763	760	/5/			
	9	7/8	7//	7//	776	774	//2	//0	/6/	764	761			
	10	/83	/83	/82	781	779	7//	775	//2	/68	765			
	11	/88	788	/8/	786	784	/82	779	776	772	/68			
	12	794	793	793	791	789	/8/	784	780	7/6	- //2			
	13	799	798	798	796	794	791	788	784	780	775			
_	14	804	803	802	801	799	796	792	788	784	779			
tal	15	010	010	807 017	805	803	800	790	792	701	782			
noz	10	015	015	012	010	007	004	800	790	791	705			
ori	10	01/	01/	820	014	011	000	004 907	802	794	700			
ч и	10	826	825	820	822	810 810	01Z 815	807 811	802	800	791			
ron	20	820	820	828	826	873	810 810	81 <i>1</i>	800	803	795			
'n	20	823	823	821	820	826	872	817	812	805	798			
atio	21	837	836	835	833	829	825	820	814	808	800			
ari	23	840	840	838	836	832	828	823	817	810	802			
2	24	843	843	841	839	835	831	826	819	812	805			
tior	25	846	846	844	842	838	834	828	822	814	806			
nat	26	849	848	847	844	841	836	830	824	816	808			
ncli	27	852	851	849	847	843	838	833	826	818	809			
-	28	854	854	852	849	845	840	834	827	820	811			
	29	856	856	854	851	847	842	836	829	821	812			
	30	858	858	856	853	849	844	838	831	822	813			
	31	860	860	858	855	851	846	839	832	823	814			
	32	862	861	859	856	852	847	840	833	824	814			
	33	863	863	861	858	854	848	841	834	825	815			
	34	865	864	862	859	855	849	842	834	825	815			
	35	866	865	863	860	856	850	843	835	826	816			
	36	867	866	864	861	856	851	844	835	826	816			
	37	867	867	865	861	857	851	844	836	826	816			
	38	868	867	865	862	857	851	844	836	826	815			
	39	868	867	865	862	857	851	844	835	826	815			
	40	868	868	866	862	857	851	844	835	825	814			
	41	868	868	865	862	857	851	843	835	825	813			
	42	868	867	865	862	857	850	843	834	824	812			
	43	867	867	865	861	856	850	842	833	823	811			
	44	867	866	864	860	855	849	841	832	822	810			
	45	866	865	863	859	854	848	840	831	820	809			

	Orientation (variation East or West from South)											
		0	5	10	15	20	25	30	35	40	45	
	0	731	731	731	731	731	731	731	731	731	731	
	1	737	737	737	737	737	737	736	736	736	735	
	2	744	744	744	744	743	743	742	742	741	740	
	3	751	751	750	750	750	749	748	747	746	745	
	4	757	757	757	756	756	755	754	752	751	749	
	5	764	763	763	762	762	760	759	758	756	754	
	6	770	770	769	768	767	766	764	763	760	758	
	7	776	776	775	774	773	771	770	767	765	762	
	8	782	782	781	780	779	777	775	772	769	766	
	9	788	787	787	786	784	782	780	777	774	770	
	10	793	793	792	791	789	787	784	781	778	774	
	11	799	798	798	796	794	792	789	786	782	778	
	12	804	804	803	801	799	797	794	790	786	782	
	13	809	809	808	806	804	801	798	794	790	785	
	14	814	814	813	811	809	806	802	798	794	788	
tal)	15	819	818	81/	816	813	810	806	802	/9/	792	
on	16	823	823	822	820	818	814	810	806	801	/95	
oriz	17	828	827	826	824	822	818	814	809	804	/98	
h	18	832	832	831	829	826	822	818	813	807	801	
uo.	19	836	836	835	833	830	826	821	816	810	803	
n fr	20	840	840	838	836	833	829	825	819	813	806	
tio	21	844	844	842	840	837	833	828	822	815	808	
Iria	22	848	847	846	843	840	836	831	825	818	811	
ev)	23	851	851	849	847	843	839	834	828	820	813	
uo	24	854	854	852	850	840	842	830	830	823 925	815 017	
nati	25	857	857	050	000 000	849 950	044	0/1	032	825 877	010	
clir	20	862	862	000 961	000	05Z 057	047 940	041	034	02/	820	
드	27	865	865	863	860	856	049 851	845 845	838	820	820 821	
	29	868	867	865	862	858	853	847	840	831	872	
	30	870	869	867	864	860	855	8/19	8/1	833	873	
	31	872	871	869	866	862	857	850	842	834	824	
	32	873	873	871	868	863	858	851	844	835	825	
	33	875	874	872	869	865	859	852	844	835	825	
	34	876	875	873	870	866	860	853	845	836	826	
	35	877	876	875	871	867	861	854	846	836	826	
	36	878	877	875	872	868	862	855	846	837	826	
	37	879	878	876	873	868	862	855	846	837	826	
	38	879	879	877	873	868	862	855	846	837	826	
	39	880	879	877	873	869	862	855	846	836	825	
	40	880	879	877	873	869	862	855	846	836	825	
	41	880	879	877	873	868	862	854	845	835	824	
	42	879	879	877	873	868	862	854	845	834	823	
	43	879	878	876	872	867	861	853	844	833	822	
	44	878	878	875	872	867	860	852	843	832	820	
	45	877	877	874	871	866	859	851	842	831	819	

Zone 8E

Zone 9)S
--------	----

		Orientation (variation East or West from South)												
		0	5	10	15	20	25	30	35	40	45			
	0	738	738	738	738	738	738	738	738	738	738			
	1	745	745	745	744	744	744	744	743	743	742			
	2	752	752	752	751	751	751	750	749	748	748			
	3	759	759	759	758	758	757	756	755	754	753			
	4	766	766	766	765	764	763	762	761	759	758			
	5	773	773	773	772	771	770	768	767	765	763			
	6	780	780	779	778	777	776	774	772	770	767			
	7	787	786	786	785	784	782	780	778	775	772			
	8	793	793	792	791	790	788	785	783	780	776			
	9	799	799	798	797	796	794	791	788	785	781			
	10	806	805	805	803	801	799	796	793	789	785			
	11	812	811	810	809	807	805	801	798	794	789			
	12	817	817	816	815	813	810	806	803	798	793			
	13	823	823	822	820	818	815	811	807	803	797			
	14	829	828	827	825	823	820	816	812	807	801			
tal)	15	834	834	832	831	828	825	821	816	811	805			
on	16	839	839	838	836	833	829	825	820	815	808			
oriz	17	844	844	843	840	838	834	829	824	818	812			
q	18	849	848	847	845	842	838	834	828	822	815			
οu	19	854	853	852	850	846	842	837	832	825	818			
n fr	20	858	858	856	854	850	846	841	835	829	821			
tio	21	862	862	860	858	855	850	845	839	832	824			
Iria	22	800	800	864	862	858	854	848	842	835	827			
(va	23	870	8/0	808	805	862	857	852	845	837	829			
on	24	074	0/5	072	009	860	000	000	040	040	034			
nati	25	0//	0//	075	976	009	004 967	030 960	021	045 945	004			
cli	20	001	000	0/0	070 970	072	860	862	000	045 947	020			
5	27	887	886	88/	881	877	872	865	858	8/9	830			
	20	889	889	887	884	880	874	867	860	851	841			
	30	892	891	889	886	882	876	870	862	852	842			
	31	894	894	892	888	884	878	871	863	854	844			
	32	896	896	894	891	886	880	873	865	855	845			
	33	898	898	896	892	888	882	874	866	856	846			
	34	900	899	897	894	889	883	876	867	857	846			
	35	902	901	899	895	890	884	877	868	858	847			
	36	903	902	900	897	892	885	878	869	859	847			
	37	904	903	901	897	892	886	878	869	859	847			
	38	905	904	902	898	893	887	879	870	859	847			
	39	905	905	903	899	894	887	879	870	859	847			
	40	906	905	903	899	894	887	879	870	859	847			
	41	906	905	903	899	894	887	879	870	859	846			
	42	906	905	903	899	894	887	879	869	858	846			
	43	906	905	903	899	894	887	878	869	857	845			
	44	906	905	903	899	893	886	878	868	856	844			
	45	905	904	902	898	893	885	877	867	855	843			

		Orientation (variation East or West from South)										
		0	5	10	15	20	25	30	35	40	45	
	0	742	742	742	742	742	742	742	742	742	742	
	1	748	748	748	748	748	748	747	747	747	746	
	2	756	756	755	755	755	754	754	753	752	751	
	3	763	763	762	762	762	761	760	759	758	756	
	4	770	770	769	769	768	767	766	765	763	761	
	5	777	777	776	775	775	773	772	770	768	766	
	6	783	783	783	782	781	779	778	776	773	771	
	7	790	790	789	/88	/8/	/85	/83	/81	778	775	
	8	796	/96	796	/95	793	791	789	786	/83	/80	
	9	803	802	802	801	799	/9/	794	791	788	784	
	10	809	809	808	806	805	802	800	796	793	788	
	11	815	815	814	812	810	808	805	801	797	793	
	12	821	820	819 819	010	010	010	014	800	801	200	
	10	020	020	025 020	025	021	010	014 010	010	000 010	800	
~	14	837	836	825	020 83/	820	878	824	810 810	810 817	804 808	
Ital	16	8/12	8/2	840	838	836	832	828	873	817	811	
zor	17	8/17	8/6	8/15	8/3	8/0	837	832	827	821	815	
ori	18	852	851	850	848	845	841	836	831	825	818	
노	19	856	856	854	852	849	845	840	834	828	821	
froi	20	861	860	859	856	853	849	844	838	831	824	
- u	21	865	864	863	860	857	853	847	841	834	826	
atio	22	869	868	867	864	861	856	851	844	837	829	
ari	23	873	872	870	868	864	860	854	847	840	831	
2	24	876	876	874	871	868	863	857	850	842	834	
tio	25	880	879	877	875	871	866	860	853	845	836	
ina	26	883	882	881	878	874	869	862	855	847	838	
lncl	27	886	885	884	881	876	871	865	857	849	840	
_	28	889	888	886	883	879	874	867	860	851	841	
	29	891	891	889	886	882	876	869	861	853	843	
	30	894	893	891	888	884	878	871	863	854	844	
	31	896	895	894	890	886	880	873	865	855	845	
	32	898	898	896	892	888	882	875	866	857	846	
	33	900	899	897	894	889	883	876	867	858	847	
	34	902	901	899	895	891	884	877	868	858	847	
	35	903	902	900	897	892	886	8/8	869	859	848	
	36	904	904	901	898	893	887	879	870	860	848	
	3/	905	905	902	899	894	887	880	870	860	848	
	30	900	905	903	900	894 80E	000	000	8/1 971	860	040 040	
	39	907	900	904	900	095 005	000	000	0/1 971	860	040 040	
	40	907	907	904	900	895	888	880	870	859	8/17	
	42	907	907	904	900	895	888	880	870	859	846	
	43	907	906	904	900	895	888	879	869	858	845	
	44	907	906	903	900	894	887	878	868	857	844	
	45	906	905	903	899	893	886	877	867	856	843	

Zone 9E
Zone	10
	-

	Orientation (variation East or West from South)										
		0	5	10	15	20	25	30	35	40	45
	0	750	750	750	750	750	750	750	750	750	750
	1	757	757	757	757	757	757	756	756	756	755
	2	765	765	764	764	764	763	763	762	761	760
	3	772	772	772	771	771	770	769	768	767	765
	4	779	779	779	778	777	776	775	774	772	770
	5	786	786	785	785	784	783	781	779	777	775
	6	793	793	/92	791	790	/89	/8/	/85	/83	/80
	/	799	/99	799	/98	796	795	793	790	788	785
	8	806	806	805	804	803	801	/98	796	793	789
	9	012	012	017	810	808	800	804	801	/9/	794
	10	010	010	01/	010	014 920	012	009 014	000	00Z 907	202 202
	12	820	820	820	878	825	873	014 Q10	011 815	807 811	806
	12	836	836	835	822	821	828	824	820	815	810
	14	842	841	840	838	836	833	829	874	819	814
-	15	847	847	845	843	841	838	833	829	823	817
Ital	16	852	852	850	848	846	842	838	833	827	821
izot	17	857	857	855	853	850	847	842	837	831	824
jor	18	862	861	860	858	855	851	846	841	834	827
Ē	19	866	866	865	862	859	855	850	844	838	831
fro	20	871	870	869	867	863	859	854	848	841	833
u	21	875	875	873	871	867	863	857	851	844	836
iati	22	879	879	877	874	871	866	861	854	847	839
/ari	23	883	882	881	878	874	870	864	857	850	841
ے د	24	887	886	884	882	878	873	867	860	852	844
tio	25	890	890	888	885	881	876	870	863	855	846
ling	26	893	893	891	888	884	879	873	865	857	848
Inc	27	896	896	894	891	887	882	875	868	859	850
	28	899	899	897	894	890	884	877	870	861	851
	29	902	901	899	896	892	886	880	872	863	853
	30	904	904	902	899	894	888	882	873	864	854
	31	907	906	904	901	896	890	883	875	866	855
	32	909	908	906	903	898	892	885	876	867	856
	33	911	910	908	904	900	894	886	8/8	868	857
	34	912	912	909	906	901	895	887	879	869	858
	35	914	913	911	907	902	896	888	8/9	869	858
	30	915	914	912	908	903	897	800	001	870	000
	20	017	016	915 01/	909	904	808	890	001 991	870	000 858
	20	017	017		011	905	800	890	001 881	870	858
	39	018	917 017	015	011	905	800	890	001 881	870	858
	40	918	917	915	911	906	899	890	880	869	857
	42	918	917	915	911	905	898	890	880	869	856
	43	918	917	914	910	905	898	889	879	868	855
	44	917	916	914	910	904	897	889	878	867	854
	45	916	916	913	909	904	896	888	877	866	853

				Orien	tation (va	ariation Ea	ast or We	est from S	outh)		
		0	5	10	15	20	25	30	35	40	45
	0	750	750	750	750	750	750	750	750	750	750
	1	756	756	756	756	756	755	755	755	754	754
	2	763	763	763	762	762	762	761	760	760	759
	3	769	769	769	769	768	767	767	766	765	763
	4	776	776	775	775	774	773	772	771	769	768
	5	782	782	782	781	780	779	778	776	774	772
	6	788	788	788	787	786	785	783	781	779	777
	7	794	794	794	793	791	790	788	786	783	781
	8	800	800	799	798	797	795	793	791	788	785
	9	806	806	805	804	802	800	798	795	792	789
	10	811	811	810	809	807	805	803	800	796	792
	11	81/	816	816	814	812	810	807	804	800	/96
	12	822	822	821	819	81/	815	812	808	804	800
	13	827	827	826	824	822	819	816	812	808	803
_	14	832	831	830	829	827	824	820	816	811	806
tal)	15	837	836	835	833	831	828	824	820	815	809
ion 1	10	841	841	840	838	835	832	828	823	818	812
oriz	1/	845	845	844	842	839	836	832	827	821	815
ې د	18	849	849	848	846	843	840	835	830	824	818
uo.	19	053	053	852 956	850	847	843 946	030	033	827	820
nfi	20	857 961	857	850	800 0E7	850 9E4	840	04Z	020	030	023 025
Itio	21	864	864	009	860	054	050	045	039	032	025
aria	22	868	867	866	863	860	855	850	811	835	829
ž	23	871	870	869	866	863	858	853	846	839	831
ion	25	874	873	871	869	865	861	855	848	841	833
nat	26	876	876	874	871	868	863	857	850	843	834
cli	27	879	878	877	874	870	865	859	852	844	835
-	28	881	881	879	876	872	867	861	854	846	837
	29	883	883	881	878	874	869	863	855	847	838
	30	885	884	883	880	876	870	864	857	848	838
	31	887	886	884	881	877	872	865	858	849	839
	32	888	888	886	883	879	873	866	859	850	840
	33	890	889	887	884	880	874	867	859	850	840
	34	891	890	888	885	881	875	868	860	851	840
	35	892	891	889	886	881	876	868	860	851	840
	36	892	892	890	887	882	876	869	860	851	840
	37	893	892	890	887	882	876	869	860	851	840
	38	893	893	891	887	882	876	869	860	850	839
	39	893	893	891	887	882	876	869	860	850	839
	40	893	893	891	887	882	876	868	859	849	838
	41	893	892	890	887	882	875	868	859	848	837
	42	893	892	890	886	881	875	867	858	847	836
	43	892	891	889	885	880	874	866	857	846	834
	44	891	890	888	884	879	873	865	855	845	833
	45	890	889	887	883	878	872	863	854	843	831

Zone	12
------	----

		Orientation (variation East or West from South)									
		0	5	10	15	20	25	30	35	40	45
	0	805	805	805	805	805	805	805	805	805	805
	1	812	812	811	811	811	811	811	810	810	809
	2	819	819	819	818	818	817	817	816	815	814
	3	826	826	826	825	825	824	823	822	821	820
	4	833	833	833	832	831	830	829	828	826	824
	5	840	840	839	839	838	837	835	833	831	829
	6	847	847	846	845	844	843	841	839	837	834
	7	853	853	853	852	850	849	847	844	842	839
	8	860	860	859	858	856	854	852	849	846	843
	9	866	866	865	864	862	860	857	854	851	847
	10	872	8/2	8/1	870	868	865	863	859	856	851
	11	8/8	8/8	8//	8/5	8/3	8/1	868	864	860	855
	12	884	883	882	881	8/9	876	8/3	869	864	859
	13	889	889	888	885	884	881	8//	8/3	868	863
_	14	894	894	893	891	889	880	882	8//	872	867
tal	15	900	899	002	890 001	894	890 80E	000	00E	8/0	870
noz	10	905	904	905	901	000	800	090	000	000	0/5 770
ori:	10	909	909	908	900	905	002	094	009	005	0//
Ē	10	010	915	912	910	907	905	000	806	007 900	000
ron	20	022	918	021	018	015	011	902	900	803	885
n f	20	926	926	921	910	919	91/	900	903	896	888
atio	22	930	930	924	926	922	918	912	906	898	890
aria	23	934	933	932	929	925	921	915	908	901	892
2	24	937	937	935	932	928	924	918	911	903	894
tior	25	940	940	938	935	931	926	920	913	905	896
nat	26	943	943	941	938	934	929	923	915	907	898
JCli	27	946	945	944	941	937	931	925	917	909	899
-	28	949	948	946	943	939	934	927	919	911	901
	29	951	950	948	945	941	935	929	921	912	902
	30	953	952	951	947	943	937	930	922	913	903
	31	955	954	952	949	945	939	932	924	914	904
	32	957	956	954	951	946	940	933	925	915	905
	33	958	958	955	952	947	941	934	926	916	905
	34	959	959	957	953	948	942	935	926	916	905
	35	961	960	958	954	949	943	936	927	917	905
	36	961	961	959	955	950	944	936	927	917	905
	37	962	961	959	956	950	944	936	927	917	905
	38	962	962	959	956	951	944	936	927	916	905
	39	963	962	960	956	951	944	936	927	916	904
	40	962	962	959	956	951	944	936	926	915	903
	41	962	961	959	955	950	943	935	925	914	902
	42	962	961	959	955	949	943	934	925	913	901
	43	961	960	958	954	949	942	933	923	912	899
	44	960	959	957	953	948	941	932	922	911	898
	45	959	958	956	952	946	939	931	921	909	896

Orientation (variation East or West from South)											
		0	5	10	15	20	25	30	35	40	45
	0	789	789	789	789	789	789	789	789	789	789
	1	795	795	795	795	795	795	794	794	794	793
	2	802	802	802	802	801	801	800	800	799	798
	3	809	808	808	808	807	807	806	805	804	803
	4	815	815	814	814	813	812	811	810	809	807
	5	821	821	821	820	819	818	81/	815	813	811
	6	827	827	826	826	825	823	822	820	818	815
	/	833	833	832	831	830 925	829	827	825	822	819
	0	059 074	020	020	037	055	034	032	029	020	025
	10	044 940	044 940	045	042	041 946	039 044	030 0/1	034	031	027
	11	855	85/	853	852	850	8/8	8/15	8/12	838	834
	12	859	859	858	857	855	853	850	846	842	838
	13	864	864	863	862	860	857	854	850	846	841
	14	869	869	868	866	864	861	858	854	849	844
=	15	873	873	872	870	868	865	861	857	852	847
nta	16	878	877	876	874	872	869	865	861	855	850
izo	17	882	881	880	878	876	872	869	864	858	852
hor	18	886	885	884	882	879	876	872	867	861	855
E	19	889	889	888	886	883	879	875	870	864	857
fro	20	893	892	891	889	886	882	878	873	866	860
ion	21	896	896	894	892	889	885	881	875	869	862
iati	22	899	899	898	895	892	888	883	878	871	863
var	23	902	902	900	898	895	891	886	880	873	865
) u	24	905	905	903	901	897	893	888	882	875	867
atic	25	908	907	906	903	900	895	890	884	876	868
lin	26	910	909	908	905	902	897	892	885	878	870
<u>n</u>	27	912	912	910	907	904	899	894	887	879	871
	28	914	914	912	909	906	901	895	888	880	872
	29	916	915	914	911	907	902	896	889	881	872
	30	91/	91/	915	912	909	904	898	890	882	8/3
	31	919	918	916	914	910	905	898	891	883	874
	32	920	919	918	915	911	906	899	892	883	874
	24	021	021	010	016	012	900	900	092	004	074 974
-	25	021	021	020	017	012	907	900	807	004 881	874 874
	36	922	921	920	917	912	907	900	892	883	873
	37	922	922	920	917	913	907	900	892	883	873
	38	922	922	920	917	912	907	900	892	882	872
	39	922	921	919	916	912	906	899	891	881	871
	40	921	921	919	916	911	905	898	890	880	870
	41	921	920	918	915	910	905	897	889	879	868
	42	920	919	917	914	909	903	896	888	878	867
	43	919	918	916	913	908	902	895	886	876	865
	44	917	916	915	911	907	901	893	885	875	863
	45	916	915	913	910	905	899	891	883	873	861

				Orien	tation (va	ariation E	ast or We	est from S	outh)		
		0	5	10	15	20	25	30	35	40	45
	0	701	701	701	701	701	701	701	701	701	701
	1	707	706	706	706	706	706	706	705	705	705
	2	713	713	712	712	712	711	711	710	710	709
	3	719	719	718	718	718	717	716	715	714	713
	4	725	725	724	724	723	722	721	720	719	717
	5	730	730	730	729	729	728	726	725	723	722
	6	736	736	736	735	734	733	731	730	728	725
	7	742	741	741	740	739	738	736	734	732	729
	8	/4/	/4/	746	745	744	/43	/41	/38	/36	/33
	9	752	/52	/52	751	749	747	745	743	740	/3/
	10	758	757	757	755	754	752	750	747	744	740
	11	762	762	761	760	759	756	754	751	747	744
	12	707	707	700	765	763	761	758	755	751	747
	13	772	772	775	769	768	765	762	759	755	750
~	14	70	70	775	774	776	709	700	766	750	755
Ital	15	785	785	78/	782	780	775	770	760	764	750
zon	17	780	780	788	786	78/	780	775	703	767	762
ori	18	703	703	700	790	787	78/	780	775	770	764
۲	19	797	796	795	793	791	787	783	778	773	767
froi	20	800	800	799	797	794	790	786	781	775	769
- L	21	804	803	802	800	797	793	789	784	778	771
atic	22	807	806	805	803	800	796	792	786	780	773
ari	23	810	809	808	806	803	799	794	789	782	775
2	24	813	812	811	809	806	802	797	791	784	777
tio	25	815	815	814	811	808	804	799	793	786	779
ina	26	818	818	816	814	810	806	801	795	788	780
ncl	27	820	820	818	816	813	808	803	797	790	782
-	28	823	822	821	818	815	810	805	798	791	783
	29	825	824	822	820	816	812	806	800	792	784
	30	826	826	824	822	818	813	808	801	793	785
	31	828	827	826	823	819	815	809	802	794	785
	32	829	829	827	825	821	816	810	803	795	786
	33	831	830	828	826	822	817	811	804	796	787
	34	832	831	830	827	823	818	812	804	796	787
	35	833	832	830	828	824	818	812	805	796	787
	36	833	833	831	828	824	819	812	805	796	787
	37	834	833	832	829	824	819	813	805	796	/8/
	38	834	834	832	829	825	819	813	805	796	786
	39	835	834	832	829	825	819	813	805	796	786
	40	835	834	832	829	825	819	812	804	795	785
	41	034	034	032	829	824	019	012	804	795	784
	42	822	833	821	828	872	817	810	803	794	782
	43	833	832	830	827	822	816	809	802	793	781
	44	822	821	820	826	821	815	808	800	792	770
		0.52	0.51	025	020	021	015	000	000	, 50	

				Orien	tation (va	ariation E	ast or We	st from S	outh)		
		0	5	10	15	20	25	30	35	40	45
	0	758	758	758	758	758	758	758	758	758	758
	1	766	765	765	765	765	765	764	764	764	763
	2	773	773	773	773	772	772	771	771	770	769
	3	781	781	781	780	780	779	778	777	776	774
	4	789	789	788	788	787	786	785	783	781	779
	5	796	796	796	795	794	793	791	789	787	785
	6	804	803	803	802	801	799	797	795	793	790
	7	811	811	810	809	808	806	804	801	798	795
	8	818	818	817	816	814	812	810	807	804	800
	9	825	824	824	822	821	818	816	812	809	805
	10	831	831	830	829	827	824	821	818	814	809
	11	838	838	837	835	833	830	827	823	819	814
	12	844	844	843	841	839	836	833	828	824	818
	13	851	850	849	847	845	842	838	833	828	823
	14	857	856	855	853	850	847	843	838	833	827
tal)	15	862	862	861	859	856	852	848	843	837	831
ont	16	868	868	866	864	861	858	853	848	842	835
oriz	17	874	873	872	869	866	862	858	852	846	839
h	18	879	878	877	875	871	867	862	856	850	842
шo	19	884	883	882	880	876	872	867	861	854	846
ן fr	20	889	888	887	884	881	876	871	865	857	849
tio	21	893	893	891	889	885	880	8/5	868	861	852
ria	22	898	897	896	893	889	884	8/9	872	864	855
(va	23	902	902	900	897	893	888	882	875	867	858
u	24	906	906	904	901	897	892	000	8/9	870	861
lati	25	910	910	908	905	901	896	889	882	8/3	863
clin	20	914	913	912	909	904	899	892	884	8/0	800
<u> </u>	27	918	917	915	912	908	902	895	807	8/8	808
	20	921	920	910	019	012	905	000	890	000	070 070
	29	027	925	921	021	016	908	900	092 004	005	974
	30	927	920	924	921	910	910	905	896	886	875
	32	932	925	929	926	921	91/	907	898	888	876
	33	934	933	931	928	923	916	909	900	889	878
	34	936	935	933	930	925	918	910	901	890	879
	35	938	937	935	931	926	920	912	902	891	879
	36	940	939	936	933	928	921	913	903	892	880
	37	941	940	938	934	929	922	914	904	893	880
	38	942	941	939	935	930	923	914	904	893	881
	39	943	942	940	936	930	923	915	905	893	881
	40	944	943	940	936	931	924	915	905	894	881
	41	944	943	941	937	931	924	915	905	893	880
	42	944	944	941	937	931	924	915	905	893	880
	43	944	944	941	937	931	924	915	904	892	879
	44	944	943	941	937	931	923	914	904	892	878
	45	944	943	940	936	930	923	914	903	891	877

				Orien	tation (va	ariation E	ast or We	st from S	outh)		
		0	5	10	15	20	25	30	35	40	45
	0	712	712	712	712	712	712	712	712	712	712
	1	718	718	718	718	718	718	717	717	717	716
	2	725	725	725	725	725	724	724	723	722	721
	3	732	732	732	732	731	730	730	729	727	726
	4	739	739	739	738	737	737	735	734	733	731
	5	746	746	745	745	744	743	741	740	738	736
	6	752	752	752	751	750	749	747	745	743	740
	7	759	759	758	757	756	754	753	750	748	745
	8	765	765	764	763	762	760	758	755	753	749
	9	771	771	771	769	768	766	763	761	757	754
	10	777	777	776	775	773	771	769	765	762	758
	11	783	783	782	781	779	777	774	770	766	762
	12	789	789	788	786	784	782	779	775	771	766
	13	795	794	793	792	789	787	783	779	775	770
	14	800	800	799	797	795	792	788	784	779	774
tal)	15	805	805	804	802	/99	/96	792	/88	/83	7//
ou	16	810	810	809	807	804	801	/9/	792	/8/	/81
oriz	17	815	815	814	812	809	805	801	796	791	784
Ч Ч	18	820	819	818	816	813	810	805	800	794	/88
u.	19	824	824	823	820	818	814	809	804	/98	791
n fr	20	829	828	827	825	822	818	813	807	801	794
tio	21	833	833	831	829	826	821	816	811	804	797
ıria	22	837	837	835	833	829	825	820	814	807	/99
Š	23	841	840	839	840	833	020	823	81/	810	802
on	24	044	044	042	040	020	032	020	020	012	004 006
nati	25	040 0E1	047	840	843 846	042	030	829	022	017	800
clir	20	001	001	049	040 940	045 945	030 940	032	025	017 910	000 910
-	27	857	857	855	852	8/18	8/3	034 827	830	821	810 812
	20	860	859	858	855	851	8/15	830	832	823	81/
	30	862	862	860	857	853	848	841	834	825	815
	31	865	864	862	859	855	850	843	835	826	817
	32	867	866	864	861	857	851	845	837	828	818
	33	869	868	866	863	859	853	846	838	829	819
	34	871	870	868	865	860	854	847	839	830	820
	35	872	871	869	866	862	856	849	840	831	820
	36	873	873	871	867	863	857	850	841	831	821
	37	875	874	872	868	864	858	850	842	832	821
	38	876	875	873	869	865	858	851	842	832	821
	39	876	876	873	870	865	859	851	842	832	821
	40	877	876	874	870	866	859	851	843	832	821
	41	877	876	874	871	866	859	852	842	832	821
	42	877	877	874	871	866	859	851	842	832	820
	43	877	877	874	871	866	859	851	842	831	819
	44	877	876	874	870	865	859	850	841	830	818
	45	877	876	874	870	865	858	850	840	829	817

				Orien	tation (va	ariation Ea	ast or We	st from S	outh)		
		0	5	10	15	20	25	30	35	40	45
	0	691	691	691	691	691	691	691	691	691	691
	1	697	697	697	697	697	697	696	696	696	695
	2	704	703	703	703	703	702	702	701	700	700
	3	710	710	710	709	709	708	707	706	705	704
	4	716	716	716	715	714	714	713	711	710	708
	5	722	722	722	721	720	719	718	716	715	713
	6	/28	/28	727	- 727	/26	724		/21	/19	/1/
	/	734	734	/33	732	/31	730	728	726	724	721
	8	740	739	739	738	737	735	733	731	728	725
	9 10	745	745	744	745	742	740	730	735	736	729
	10	750	750	750	740	747	745	742	759	730	736
	12	750	761	760	758	757	754	751	7/8	740	7/0
	13	766	766	765	763	761	759	756	752	748	743
	14	771	770	769	768	766	763	760	756	751	747
=	15	775	775	774	772	770	767	764	760	755	750
nta	16	780	780	779	777	774	771	768	763	758	753
izo	17	784	784	783	781	778	775	771	767	762	756
hor	18	788	788	787	785	782	779	775	770	765	759
E	19	792	792	791	789	786	783	778	773	768	761
fro	20	796	796	795	793	790	786	782	776	771	764
on	21	800	800	798	796	793	789	785	779	773	766
iati	22	804	803	802	800	797	792	788	782	776	769
var	23	807	806	805	803	800	795	791	785	778	771
) u	24	810	810	808	806	803	798	793	787	781	773
atio	25	813	813	811	809	805	801	796	790	783	775
lina	26	816	815	814	811	808	804	798	792	785	777
lnc	27	819	818	816	814	810	806	800	794	786	778
	28	821	821	819	816	813	808	802	796	788	780
	29	823	823	821	819	815	810	804	797	790	781
	30	826	825	823	821	817	812	806	799	791	782
	31	827	827	825	822	818	813	807	800	792	783
	32	829	829	827	824	820	815	809	801	793	784 705
	24	021	020	020	020	021	010	010	005 002	794	705
	25	002	002	030	02/	025	017	011 012	005 904	795	705
	36	83/	83/	832	820	825	819	812	805	796	785
	37	835	835	833	830	825	820	813	805	796	786
	38	836	835	833	830	826	820	813	805	796	786
	39	836	836	834	831	826	820	813	805	796	785
	40	837	836	834	831	826	820	813	805	796	785
	41	837	836	834	831	826	820	813	805	795	784
	42	837	836	834	831	826	820	813	804	795	784
	43	836	836	834	830	826	820	812	804	794	783
	44	836	835	833	830	825	819	811	803	793	782
	45	835	835	832	829	824	818	811	802	792	780

Zone 18

		Orientation (variation East or West from South)									
		0	5	10	15	20	25	30	35	40	45
	0	645	645	645	645	645	645	645	645	645	645
	1	650	650	650	650	650	649	649	649	649	648
	2	656	656	655	655	655	655	654	654	653	652
	3	661	661	661	661	660	660	659	658	657	656
	4	667	667	666	666	665	664	664	663	661	660
	5	672	672	671	671	670	669	668	667	665	664
	6	677	677	677	676	675	674	673	671	669	667
	7	682	682	682	681	680	679	677	675	673	671
	8	687	687	687	686	685	683	681	679	677	675
	9	692	692	691	691	689	688	686	683	681	678
	10	697	697	696	695	694	692	690	687	684	681
	11	701	701	701	699	698	696	694	691	688	684
	12	706	706	705	704	702	700	698	695	691	687
	13	710	710	709	708	706	704	701	698	695	691
	14	714	714	713	712	710	708	705	702	698	693
al)	15	718	718	717	716	714	711	708	705	701	696
ont	16	722	722	721	720	718	715	712	708	704	699
riz	17	726	726	725	723	721	718	715	711	706	701
tion from ho	18	730	729	728	727	724	721	718	714	709	704
	19	733	733	732	730	728	725	721	717	712	706
	20	736	736	735	733	731	728	724	719	714	709
	21	740	739	738	736	734	730	726	722	717	711
riat	22	742	742	741	739	736	733	729	724	719	713
(va	23	745	745	744	742	739	736	731	726	721	714
u	24	/48	/48	746	/44	742	/38	/34	729	/23	/16
ati	25	/51	/50	/49	/4/	/44	/40	/36	/30	/24	/18
clin	26	/53	752	751	749	746	742	/38	732	/26	/19
Ĕ	27	/55	/55	/53	751	748	744	739	734	728	720
	28	/5/	/5/	/55	753	750	746	741	/35	729	722
	29	759	758	757	755	752	748	743	/3/	730	723
	21	701	760	759	750	755	749	744	720	731	724
	22	764	762	760	750	755	750	745	739	732	724
	32	765	764	763	759	757	752	740	740	737	725
	34	766	765	764	761	758	752	7/8	7/1	734	726
	35	767	766	765	762	758	754	748	741	734	720
	36	767	767	765	763	759	754	740	742	735	726
	37	768	767	766	763	759	755	749	742	735	726
	38	768	768	766	763	760	755	749	742	735	726
	39	768	768	766	764	760	755	749	742	734	725
	40	768	768	766	763	760	755	749	742	734	725
	40	768	768	766	763	759	754	748	741	733	724
	42	768	767	766	763	759	754	748	741	733	723
	43	767	767	765	762	758	753	747	740	732	722
	44	767	766	764	762	758	752	746	739	731	721
	45	766	765	763	761	757	751	745	738	729	720

		Orientation (variation East or West from South)									
		0	5	10	15	20	25	30	35	40	45
	0	617	617	617	617	617	617	617	617	617	617
	1	622	622	621	621	621	621	621	621	620	620
	2	627	627	627	627	626	626	625	625	624	624
	3	632	632	632	632	631	631	630	629	628	627
	4	637	637	637	637	636	635	635	634	632	631
	5	642	642	642	642	641	640	639	638	636	635
	6	647	647	647	646	646	645	643	642	640	638
	· /	657	657	656	656	655	652	652	650	647	645
	9	662	662	661	660	659	657	655	653	651	6/18
	10	666	666	665	664	663	661	659	657	654	651
	11	671	670	670	669	667	665	663	661	658	654
	12	675	675	674	673	671	669	667	664	661	657
	13	679	679	678	677	675	673	670	667	664	660
	14	683	683	682	681	679	677	674	671	667	663
Ê	15	687	686	686	684	682	680	677	674	670	666
nta	16	690	690	689	688	686	683	680	677	673	668
izo	17	694	694	693	691	689	687	683	680	675	671
hoi	18	697	697	696	695	692	690	686	682	678	673
E	19	701	700	699	698	696	693	689	685	680	675
fro	20	704	703	702	701	698	695	692	687	683	677
ion	21	707	706	705	704	701	698	694	690	685	679
riat	22	710	709	708	706	704	701	697	692	687	681
vai	23	712	712	711	709	706	703	699	694	689	683
) u	24	715	715	713	711	709	705	701	696	691	684
atio	25	717	717	716	714	711	707	703	698	692	686
lin	26	720	719	718	716	713	709	705	700	694	687
Ĕ	27	722	721	720	/18	715	/11	707	701	695	689
	28	724	723	722	720	717	713	708	703	697	690
	29	725	725	724	721	720	714	710	704	600	602
	30	727	727	725	723	720	710	712	705	700	692
	32	730	729	728	726	722	718	713	707	700	693
	33	731	730	729	727	723	719	714	708	701	693
	34	732	731	730	728	724	720	715	709	702	694
	35	733	732	731	728	725	721	715	709	702	694
	36	733	733	731	729	725	721	716	709	702	694
	37	734	733	732	729	726	721	716	709	702	694
	38	734	734	732	730	726	722	716	709	702	694
	39	735	734	732	730	726	722	716	709	702	693
	40	735	734	732	730	726	721	716	709	701	693
	41	734	734	732	730	726	721	715	708	701	692
	42	734	734	732	729	725	721	715	708	700	691
	43	734	733	731	729	725	720	714	707	699	690
	44	733	732	731	728	724	719	713	706	698	689
	45	732	732	730	727	723	718	712	705	697	688

			Orientation (variation East or West from South)								
		0	5	10	15	20	25	30	35	40	45
	0	599	599	599	599	599	599	599	599	599	599
	1	604	604	603	603	603	603	603	603	602	602
	2	609	609	609	608	608	608	607	607	606	606
	3	614	614	614	613	613	612	612	611	610	609
	4	619	619	619	618	618	617	616	615	614	613
	5	624	624	623	623	622	621	620	619	618	616
	6	629	629	628	628	627	626	625	623	622	620
	7	633	633	633	632	631	630	629	627	625	623
	8	638	638	637	637	636	634	633	631	629	626
	9	642	642	642	641	640	638	637	634	632	630
	10	647	647	646	645	644	642	640	638	635	633
	11	651	651	650	649	648	646	644	642	639	636
	12	655	655	654	653	652	650	648	645	642	638
	13	659	659	658	657	656	654	651	648	645	641
	14	663	663	662	661	659	657	654	651	648	644
al)	15	667	667	666	665	663	661	658	655	651	647
ont	16	671	670	669	668	666	664	661	657	654	649
riz	17	674	674	673	672	670	667	664	660	656	652
n from ho	18	677	677	676	675	673	670	667	663	659	654
	19	681	680	679	6/8	6/6	6/3	670	666	661	656
	20	684	683	682	681	679	6/6	672	668	663	658
tio	21	687	686	685	684	681	6/8	675	670	666	660
riat	22	689	689	688	686	684	681	6//	6/3	668	662
(va	23	692	692	691	689	680	683	679	675	670	664 665
ы	24	695	694	605	604	601	600	692	670	672	667
lati	25	600	600	609	606	602	680	695	680	675	669
clin	20	701	701	700	698	695	601	687	682	676	670
2	28	701	703	701	699	697	693	689	683	677	671
	29	705	704	703	701	698	694	690	685	678	672
	30	706	706	705	703	700	696	691	686	680	673
	31	708	708	706	704	701	697	692	687	680	673
	32	709	709	707	705	702	698	693	688	681	674
	33	710	710	709	706	703	699	694	688	682	675
	34	711	711	710	707	704	700	695	689	682	675
	35	712	712	710	708	705	701	696	690	683	675
	36	713	712	711	709	705	701	696	690	683	675
	37	713	713	711	709	706	701	696	690	683	675
	38	714	713	712	709	706	702	696	690	683	675
	39	714	714	712	710	706	702	696	690	683	675
	40	714	714	712	710	706	702	696	690	682	674
	41	714	713	712	709	706	701	696	689	682	674
	42	714	713	712	709	706	701	695	689	681	673
	43	713	713	711	709	705	700	695	688	681	672
	44	713	712	711	708	704	700	694	687	680	671
	45	712	711	710	707	703	699	693	686	679	670

	Orientation (variation East or West from South)										
		0	5	10	15	20	25	30	35	40	45
	0	711	711	711	711	711	711	711	711	711	711
	1	717	717	717	716	716	716	716	715	715	715
	2	723	723	723	722	722	722	721	721	720	719
	3	729	729	729	728	728	727	727	726	725	723
	4	735	735	735	734	734	733	732	731	729	728
	5	741	741	741	740	739	738	737	735	734	732
	6	747	747	746	746	745	743	742	740	738	736
	7	752	752	752	751	750	748	747	745	742	740
	8	758	758	757	756	755	753	751	749	746	743
	9	763	763	762	761	760	758	756	753	750	747
	10	768	768	768	766	765	763	760	758	754	751
	11	774	773	773	771	770	767	765	762	758	754
	12	778	778	777	776	774	772	769	766	762	758
	13	783	783	782	781	779	776	773	769	765	761
	14	788	787	787	785	783	780	777	773	769	764
tal)	15	792	792	791	789	787	784	781	777	772	767
ont	16	797	796	795	793	791	788	784	780	775	770
oriz	17	801	800	799	797	795	792	788	783	778	772
P	18	805	804	803	801	798	795	791	786	781	775
шо	19	808	808	807	805	802	799	794	789	784	777
, fr	20	812	812	810	808	805	802	797	792	786	780
tior	21	815	815	814	811	809	805	800	795	789	782
riat	22	819	818	81/	815	812	808	803	/9/	791	784
(va	23	822	821	820	818	814	810	805	800	793	786
u	24	825	824	823	820	817	813	808	802	795	788
ati	25	827	827	825	823	820	815	810	804	797	789
clin	26	830	829	828	825	822	817	812	806	799	790
Ĕ	27	832	832	830	828	824	819	814	807	800	792
	28	835	834	832	830	820	821	810	809	801	793
	29	020	020	834	032	020	025	010	810	803	794
	21	030 040	030	020	033	021	825	819	012	804	795
	22	040 0/1	039 0/1	020	035	031	020	020	015 017	804 805	795
	32	8/13	8/12	840	830	832	878	821	81 <i>1</i>	805	790
	34	Q11	8/2 8/2	Q/1	838	834	820	877	Q15	806	707
	35	8/15	8//	8/12	830	835	830	873	815	806	797
	36	846	845	843	840	836	830	823	816	807	797
	37	846	845	844	840	836	830	824	816	806	796
	38	846	846	844	841	836	830	824	815	806	796
	39	847	846	844	841	836	830	823	815	806	795
	40	847	846	844	841	836	830	823	815	805	795
	40	846	846	844	840	836	830	823	814	804	794
	42	846	845	843	840	835	829	822	813	803	793
	43	845	845	843	839	834	828	821	812	802	791
	44	845	844	842	838	834	827	820	811	801	790
	45	844	843	841	837	832	826	819	810	800	788

Further Reading

In addition to the standards already mentioned in the text (eg BS 7671) the following documents may be of relevance to the PV system designer / installer:

- Electricity Network Association Distributed Generation Connection Guides (Free downloads from the ENA Website)
- BRE Digest 489 'Wind loads on roof-based photovoltaic systems'
- BRE Digest 495 Mechanical installation of roof-mounted photovoltaic systems
- BS 5534 'Code of practice for slating and tiling (including shingles)
- BS EN 50272-1 2010, 'Safety requirements for secondary batteries and battery installations. General safety information' Note: This includes guidance on design, operation & maintenance of battery systems.

The Certification Mark for Onsite Sustainable Energy Technologies

c/o Gemserv 10 Fenchurch Street London EC3M 3BE

Representing the best in electrical engineering and building services

ESCA House, 34 Palace Court London. W2 4HY T: 020 7313 4888 F: 020 7221 7344

	Discom PPA projects	Corporate offsite PPA	Corporate rooftop/ onsite PPA projects	EPC Contractors	Link Vue System Pvt Ltd India/Australia Capable to offer our Professional Support
Rank	projecto	projecto		(ounty scale)	System Integration
1	ReNew Power	Fourth Partner Energy	Fourth Partner Energy	Mahindra Susten	LAN Network , OFC Network, Wireless
2	Avaada	Cleantech Solar	Amplus	Sterling & Wilson	CCTV ,Fire Alarm ,Access Controls, Security
3	Adani	Hinduja Group	Tata Power	Tata Power	Systems and PIDS Fencing Trading Activities
4	Azure	Continum Wind	Mahindra Solarize	B-Electric	LIU's and Patch Cords
5	Mahindra Susten	Vibrant Energy	Amp Energy	Vikram Solar	Maintenance Free Earthing (IS3043)
6	Ayana Renewables	Amp Energy	HFM Solar	Siemens Gamesa	Communication For Power, Data and
7	NTPC Limited	Amplus	Roofsol	BHEL	Smart Intelligent Data Loggers
8	Eden	Mothi Spinner	U Solar	Jakson	Protocol Convertors, Protocol to FO Convertors
9	GSECL	Oriano Clean Energy		Waaree	MC 4 Connectors with and Without Fuse
10	Tata Power	Sakthi Muragan Group		L&T	Outdoor Electrical PLUG-Socket IP65
		0 1			16 Amps-450Amps
					Ethernet and Media Convertors

All installation capacity numbers mentioned in this report are AC capacity numbers unless otherwise mentioned.

Say No to Fossil Fuel Why Worry Price Hike Environment Green Step

DISCOM PPA

Note:

DISCOM PPA projects are utility scale projects allotted by central and state agency tenders, where end power offtake is by State DISCOMs. Market share of the leading players are based on AC commissioned capacity in CY2021

Note

Capacity (MW/)

B

Corporate PPA projects are private PPA projects where power offtaker is a private player. Onsite PPA are rooftop/ onsite projects setup under OPEX model. Offsite PPA are open access private solar parks projects. Project Capacities for Offsite and Onsite/Rooftop PPA are mentioned in DC while AC capacity of Mothi Spinner, Sakthi Murugan group and Continuum Wind are mentioned in the above chart. because DC canacity for these projects was not available

UTILITY SCALE EPC

Prozeal Infra, Siemens Gamesa and GIPCL have not confirmed their numbers.

Rooftop solar includes all installations on open ground spaces, roof, parking lot or any other area within the premises.

Annual Utility Scale Solar Installations (MWAc)

Annual Installations (MWAC)

Power Generation & Power Utility is all about Demand & Smart Supply

SMART GRID

Electrical Safety ,Metering Infrastructure, Smart Grid Distribution Management, Smart Grid Network Management, Grid Asset Management, Substation Automation, Smart Grid Security, High Energy Battery Power Storage Energy Efficiency, Electric Vehicle Charging Infrastructure ,Building Automation, Security Systems, Access Controls, CCTV &

High Energy Battery Storage System is Life Line for Power Storage, Transmission & Distribuition

The government will float tenders for sourcing 4000 MWh battery storage, "We are working on storage. We intend to come out with bids for 4,000 MWh of storage as ancillary so at four RLDCs (regional load dispatch centres) we will have 1000 MWh of storage (each) that will act as instant intervention mechanism wherever and whenever there is any sharp fluctuation because of renewables.Part of it will work as ancillary to the grid controller and part will be made available to the developers for use on a commercial basis.

High Energy StorageBattery Offer Long Duration Power Supply(DEMAND)

ESS requirement (as percentage of DT capacity) in Metro Growing Scenario with different solar PV penetration (IESA Analysis)

ESS = 20% of DT capacity

ESS requirement (as percentage of DT capacity) in Metro Saturated Scenario with different solar PV penetration (IESA Analysis)33

ESS = 10% of DT capacity

ESS = 20% of DT capacity

Global Green Infra Project Solar and EV Rd Transportation

We are Interested to visit and meet Electrical, MEP Consultants Building Infra Developers, Solar Power Developers and Solar Project Handling EPC Companies.

Link Vue System is Known Professional Team of Technical believes on Offering Genuine and Right Products. (www.linkvuesystem.com)

We Offer Design Engineering Supply and Installation Supports by Professionals

Scope Of Products

Earthing for DC Arrays

Surge Protection Devices

MC 4 Connectors with and Without Fuses

Networking LAN Fiber, Wireless and GSM Solutions, Liu's Patch Cord

Smart Data Loggers, Protocol Converters, Protocol to FO Converters

Lithium Battery Package for High Energy Storage System

Weather Monitoring Stations

DRONE Survey for Project and Maintenance of Panel Health

CCTV, Fire Alarm, Access Controls, Security Systems, PIDS Fencing, Smart Parking Management Solution.

AMC for Above

Special Project for Electric Vehicles

Connectors CCS ,GBT and CHAdeMO ,

Cables for Electric Vehicles

Cable Harness for Electric Vehicle's and Charging UNIT.

Electric Vehicle Charger 3KW -250KW AC Charging , DC Charging

CAE Power Connectors 16Amps -400 Amps

Free Dom Connectors for Low Voltage Cables

Plz Confirm your Availability and Place for meeting in Advance we will be in Dubai /Sharjah from 7th-13th Feb2022

Mail: manav.chandra@linkvuesystem.com, manish@linkvuesystem.com

Link Vue System Pvt Ltd

Electrical Safety

Earthing, Lightning & Surge Protection

Net Working Product Supply & Installation

Ethernet SW, Fiber Optics & Wire Less

I

N

D

I

A

Automation Products Data Logger, RTU's Digital & Analog 1/0's Protocol Converter, Media Converter, Cables Connectors & LIU's Perimeter Intrusion Detection System CCTV, Fire Alarm, Access Controls & Security System Cable & Connectors, Plug & Sockets for Electrical Vehicles, Solar PV, Building Wiring

A U S T R A L I A Stay Ahead Of The Spark Handle Cables-Wires with Professional Connectors for Building Wiring, Industrial, Solar and Electrical Vehicles by Link Vue System

Power Generation and Utilities(Industries + Domestic Purpose)

With Link-vue Freedom to Monitor, Access and Control Remotely

Take your equipments online

The **next** generation **IIoT** platform

marc is our next generation GSM/LAN based llot platform with built in opps for arrely and equipment for managing efficiency, uplime, productivity, condition monitoring, control, preventive & predictive maintenance.

Supported Protocols - Modbus TCP/IP, Modbus RTU, MQTT, Https

Appli	Why Bot?		
rgy & Utility gy Monogement stormer Monitoring statiol Motor C Monitoring r Energy gy Audit ar Management ar Audit	Equipment or Asset Monitoring Equipment or Asset Monitoring Mochine Monitoring Mochine Monitoring Agriculture Vehicle Mediter Wediter Simot City Custom Application evelopment	- Efficiency - Uptime - Productivity - Availability - Service - Condition - Alert - Prevention - Prediction	

Link Vue System Offer Safety for Human and Assets (ALERT 24X7)

One Stop Solution for FIRE SAFETY, SECURITY & IBMS

DAY NIGHT 24X7Monitor Solar PV Plant Through CCTV Network

Public Address Systems for Intelligent Buildings Management

Drone is next generation SPY and Remotely Monitoring&Action Machine

Drone Service Provider

Lan Networking Infrastructure

System Configuration

Fiber Optic Cable Network Architecture

Solar PV Power Plant Keep Fence all Boundaries with Gadgets

PIDS Plant Area 3.5 KM

Thermal bullet + Optical PTZ camera layout

PERIMETER INTRUSION DETECTION SYSTEM

Perimeter Intrusion Detection System (PIDS) is designed to protect assets within a perimeter by detecting intruders attempting to gain access and blocking such access using the control station. Blue Star E&E offers robust and reliable solutions for accurate detection of such unauthorised entry and protection of assets against these threats. The company's turnkey solutions can detect any unauthorised physical intrusions across the perimeter, assess the situation and track intruders for future actions. Features such as instant alarm generation and control by reporting to central monitoring station make it easier to manage such situations.

PIDS-solutions-from^oLink-yue-Systems-Pvt-Ltd---are-based-on-microwave-technology.-Optical-Fibre-Cable-(OFC)-or-video-cameras.-These-can-be-fence-mounted,-buried-underground-or-can-be-tailored-for-specificneeds,-based-on-customer-requirements.-Seamless-integration-of-PIDS-with-other-security-systems-addsone-more-layer-of-comfort-for-the-customer.-This-security-system-is-well-suited-for-military-bases,government-facilities,-oil-refineries,-petrochemical-plants,-power-plants,-sea-ports,-airports,-VIPresidences,-storage-yards-and-so-on.¶

Safe Guard Your Solar Plant from Un Authorized Trespass

Motion Sensor with Alarm Management

•Beam detectors com e in a pair of t ransm it ter and receiver. Each t ransm it ter sends four I R beam s and is received at the receiver.

•When all four beams are blocked by an intruder, then an alarm is communicated to the control panel / sounder.

•SL series quad beam detectors have dry contacts available for connection to all kind of alarm panels.

•Easy to install system, com es with autom atic beam alignm ent unit. Rem oves hum an error elem ent with 5 Year Warranty.

 Effective and efficient in securing medium threat locations like office buildings, warehouses, solar farm s etc.

Maintenance Free Earthing installation as per IS3043(2018)

Earthing as per IS3043 and IEEE 80

I am Power Plug I will be Marry with only My Right Partner Make you Safety and Comfort

MC 4 Solar PV DC Connector Family 1800V 30Amps

Out DooR IP 68 CEE Compliance Plug & Socket for Special Electrical Equipment's 2.7.3 Wall mounted CEE Socket

2.7 CEE Plug, Socket & Coupler

2.7.1 Panel Mounted CEE Socket
0
O

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
1.000	IP44	SF1331	SF1431	SF1531	
16A	IP67	SF1332	SF1432	SF1532	
004	IP44	SF3331	SF3431	SF3531	
SZA	IP67	SF3332	SF3432	SF3532	
624	IP44	SF6331	SF6431	SF6531	
63A	IP67	SF6332	SF6432	SF6532	
125A	IP67	SF5332	SF5432	SF5532	

3 pole Ampere		4 pole		5 pole
		3 pole	4 pole	5 pole
104	IP44	SF1311	SF1411	SF1511
16A	IP67	SF1312	SF1412	SF1512
224	IP44	SF3311	SF3411	SF3511
SZA	IP67	SF3312	SF3412	SF3512
634	IP44	SF6311	SF6411	SF6511
OSA	IP67	SF6312	SF6412	SF6512
125A	IP67	SF5312	SF5412	SF5512

2.7.2 Panel side-mounted CEE Socket

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
104	IP44	SF1341	SF1441	SF1541	
TOA	IP67	SF1342	SF1442	SF1542	
224	IP44	SF3341	SF3441	SF3541	
SZA	IP67	SF3342	SF3442	SF3542	
624	IP44	SF6341	SF6441	SF6541	
03A	IP67	SF6342	SF6442	SF6542	
125A	IP67	SF5342	SF5442	SF5542	

2.7.4 CEE Interlock Switch Socket

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
16A	IP67	SF1372	SF1472	SF1572	
32A	IP67	SF3372	SF3472	SF3572	
63A	IP67	SF6372	SF6472	SF6572	

Out DooR IP 68 CEE Compliance Plug & Socket for Special Electrical Equipment's Cable 2 Cable Plug & Sockets 27.7 CEE Concealed plug

2.7.5 CEE Coupler

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
40.4	IP44	SF1321	SF1421	SF1521	
16A	IP67	SF1322	SF1422	SF1522	
224	IP44	SF3321	SF3421	SF3521	
324	IP67	SF3322	SF3422	SF3522	
624	IP44	SF6321	SF6421	SF6521	
63A	IP67	SF6322	SF6422	SF6522	
125A	IP67	SF5322	SF5422	SF5522	

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
101	IP44	SF1351	SF1451	SF1551	
16A	IP67	SF1352	SF1452	SF1552	
32A -	IP44	SF3351	SF3451	SF3551	
	IP67	SF3352	SF3452	SF3552	
604	IP44	SF6351	SF6451	SF6551	
:03A	IP67	SF6352	SF6452	SF6552	
125A	IP67	SF5352	SF5452	SF5552	

2.7.6 CEE plug

3 pole		4 pole		5 pole	
Ampere	are 3 pole		4 pole	5 pole	
104	IP44	SF1301	SF1401	SF1501	
16A	IP67	SF1302	SF1402	SF1502	
224	IP44	SF3301	SF3401	SF3501	
SZA	IP67	SF3302	SF3402	SF3502	
63A	IP44	SF6301	SF6401	SF6501	
	IP67	SF6302	SF6402	SF6502	
125A	IP67	SF5302	SF5402	SF5502	

2.7.8 CEE Wall mounted plug

3 pole		4 pole		5 pole	
Ampere		3 pole	4 pole	5 pole	
	IP44	SF1361	SF1461	SF1561	
16A	IP67	SF1362	SF1462	SF1562	
32A	1P44	SF3361	SF3461	SF3561	
	IP67	SF3362	SF3462	SF3562	
63A	IP44	SF6361	SF6461	SF6561	
	IP67	SF6362	SF6462	SF6562	

Electric Vehicle and Out Door Safety Connectivity

SF-NP282815-1 Size:280*270*155

SF-NP282815-2 Size 280*270*155

Size:530*320*175

Size:240*120*120

Size:240*120*120

Size:430*320*175

SF-NP334318-1 Size: 800*600*220

Size:490*140*95

SF-NP334317-2

SF-NP334318-2 Size:800*600*220

00

SF-1805C

Size:430*120*70

SF-1803 Size:215*200*200

SF-1807-A

SF-1086A

Size 260*245*260

Size:308*277*238

SF-1807-D

SF-1086-E

I am Customize and I am Answer For All Our Door Electrical Connectivity 1.4 waterproof switch socket

SF-1808 Size:478*340*330

SF-NP1001 Scre:480*480*480

SF-NP1002 Size:588*480*480

SF-1808 Size:478*340*330

#F-NP1003 Size:460*430*380

00000

5F08-5R

Size: 100*100*73

one Eu socket

waterproof box

1) A Verison

SPALL Bize:100*100*73 one Universal socket waterproof box

SF66-SR5

Size 100*200*73

one Eu socket with

switch waterproof box.

SF06-US Size:100*200*73

one Universal socket with switch waterproof box

EF88-25R

2*Ei/ socket

waterproof box

Size: 200*100*73

1.4.1 IP66 Waterproof Box for 45*45mm modules

BE00-201 Size:200*100*73 2*Universal socket. waterproof box

Size 300*100*73 2"Universal socket with switch waterproof box

SF66-525R

Size 300*100*73

2*Eu socket with

switch waterproof box

Size 400*100*73 3*Universal sociust with switch waterproof box

SF68-S3SH

waterproof box

3*Eu sooket

with switch

Size:400*100*73

1.3.4 Electric Vehicle Distribution

SF-NP1906 Size 900*630*430

BF06-S Size 100*100*73 one UK socket. waterproof box.

5F66-55 Stze:100*200*73

one UK socket with switch waterproof box

15P040-2215

Size:300*100*73 Size:200*100*73 2*UK socket 2"LIK socket with avoid hoorgratew maleve waterproof box

SF66-826

1000-030

Size:400*100*73 3*LIK socket with switch waterproof box

Size 290*210*120

SF66-FR Size 100*100*73 one French socket waterproof box

SFOG-FRS Size:100*200*73 one French socket with switch waterproof.

SF66-2FR Size 200*100*73 2°French sockat waterproof box

Size 300*100*73

2*French socket

waterproof box

SF66-S2FR

with switch

SF66-53FH Size 400*100*73 3*French socket with switch waterproof box

IP 68 Out doorPlug&Sockets/Building Internal Electrical Cable Freedom Connectorts

Special Connectors for Low Voltage Electrical Cable FreeDOM Connection

Lightning Charges Travel in KM & Enter (Systems) from many medium

POSSIBLE SOURCES OF SURGES

DC Power Plant we Ensure Safety

LIGHTNING PROTECTION SYSTEMS IN PHOTOVOLTAIC POWER PLANTS

Link Vue System Electrical Safety (SurgeProtection, Lightning Protection& Earthing)

equipment, UPS equipment, CCTV equipment, MA equipment, card access equipment etc which are susceptible to lightning and switching surges.

Type 1 SPD-lightning current arresters

Combined, spark gap and MOV limp 25 kA / 100 kA Up ≤ 1.5 kV No follow current, zero leakage current Full coordination with Type 2 SPD

SPD PV - surge arrester

Combination of MOV and spark gap PV Type 2 SPD MOV surge arrester UCPV 170 to 1500 V DC In 15 to 20 kA Imax 40 kA

Type 2 SPD -surge arresters Combined, spark gap and MOV

Combined, spark gap and MOV U c 75 to 760 V AC In 29 kA / Imax 40 kA Up ≤ 1.35 kV

Type 1 and 2 SPD -combined arresters B+C

Combined, spark gap and MOV limp 12.5 kA / 50 kA Up ≤ 1.5 kV No follow current, zero leakage current

Surge Protection Class B C and D as per Equipment Category

Surge Protection Installation Guide Line

KA RATING 40KA PER PHASE (L-N, N-E, L-E)

SPD for power lines

- 7 module full mode protection
- Monoblock type
- Not interrupt the system
- kA rating determine by the weakest link
- Enclosed in rugged, safe, all metal enclosure
- Provided with solid state indicators (LED)
- Installed in parallel
- Design to withstand multiple strikes

SPD for data/signal

- Compatible & transparent to existing system
- Not interrupt operation system

SURGE PROTECTION SELECTION FOR POWER SYSTEM

SURGE PROTECTION SELECTION FOR PABX SYSTEM

SURGE PROTECTION SELECTION FOR FIRE ALARM SYSTEM

SURGE PROTECTION SELECTION FOR CCTV SYSTEM

SURGE PROTECTION SELECTION FOR NETWORKING SYSTEM

DSPD DATA SURGE PROTECTOR

DSPD

POWER SURGE PROTECTOR

SURGE PROTECTION SELECTION

Surge Protection Installation for Multiple Equipments Safety

A surge reference equaliser does two things; it brings together all the service SPDs by locating themin a single enclosure and provides a local earth reference for all the SPD "C" terminals to directly connect the common bonding point, or "star" connection has two external earth reference

One from the power SPD mains plug/socket local earth reference and the other from the screened cable remote earth reference. This means that the diverted surge current can split between the power and screened cable earth references.to avoid earth loops in normal operation, one SPDn option is to make the screened cable "C"connection to the common bonding point via an SPD with a switching function, which maintains isolation during normal conditions but provides a bond during the occurrence of a surge.

The surge reference equaliser is now called an MSPD, although there may not be any SPDs in it,only SPCs giving the equivalent surge functionality of the replaced SPDs.

MSPD for protecting power, antenna, telephone and Ethernet services with warning lights for protection failure and missing earth connection.

Surge Protection Installation for Multiple Equipments Safety

A surge reference equaliser does two things; it brings together all the service SPDs by locating themin a single enclosure and provides a local earth reference for all the SPD "C" terminals to directly connect the common bonding point, or "star" connection has two external earth reference

One from the power SPD mains plug/socket local earth reference and the other from the screened cable remote earth reference. This means that the diverted surge current can split between the power and screened cable earth references.to avoid earth loops in normal operation, one SPDn option is to make the screened cable "C"connection to the common bonding point via an SPD with a switching function, which maintains isolation during normal conditions but provides a bond during the occurrence of a surge.

The surge reference equaliser is now called an MSPD, although there may not be any SPDs in it,only SPCs giving the equivalent surge functionality of the replaced SPDs.

MSPD for protecting power, antenna, telephone and Ethernet services with warning lights for protection failure and missing earth connection.

Surge Protection for Serial and Co-Axial Communication Port All data, control and telephone cables entering and leaving the communications building require

All data, control and telephone cables entering and leaving the communications building require protection. The protection must be placed at the protection boundary and the protective earth connected to station earth. The aim is to divert energy at the boundary.

Data circuits require protection dependent upon their operating voltages and currents. Multistage series connected transient barriers should be employed. Figure 21 shows a typical schematic of Surge rating should be 20KA for an 8/20us impulse and the clamping voltage greater than the peak operating voltage.

Telephone lines require protection at the MDF. The protection should be multistage, when used with digital solid state telephone switches. Configuration will depend upon the termination method, eg KRONE^{®*}, ADC, Reiche etc. Protect all incoming lines and external extensions. Generally internal extensions require no protection.

LAN systems require specialised protection specific to the LAN configuration. LAN line cards are particularly sensitive to transient overvoltage's and MUST be protected. Specialised protectors are available for the following protocols:

- RS232 in both DB9 and DB25 connector types
- RS485 and RS422 in DIN rail and DB9 configuration
- Thin Ethernet with in line and protected T BNC configuration
- Thick Ethernet with in line N type and DB15 AUI configuration
- RJ45 for UTP with hub protectors and individual terminal protectors

Ensure all LAN type protectors do not inhibit LAN performance. Only choose CAT5 UTP protectors.

As well as the outer conductors of coaxial feeders the inner conductors must also have protection applied to divert energy on the inner conductor to ground. The application of surge protection to UHF and microwave circuits is limited by frequency, return loss and insertion loss considerations. Typical coaxial surge protectors consist of a fast acting gas filled arrester connected between line and ground. Figure 19 shows a typical coaxial surge protector for type N connectors. This is a bulkhead mounting type.

Arrester flashover voltage should equal twice the peak line voltage. Example in a 50 ohm line with 50W transmitter, peak voltage = 70.7V. Minimum recommended gas arrester BV = 140V. Nearest value = 230V. Surge rating should be 20KA for an 8/20us impulse.

Gas filled arresters are unsuitable for high power HF and VHF transmitters (>= 1KW) unless the transmitters incorporate return power shutdown circuitry. A gas filled arrester once fired will remain in the conducting state by the presence of RF energy. This will destroy the arrester unless the transmitter has shutdown circuitry which detects the impedance discontinuity.

Alternatively utilise spark gap arresters with arc detection and shutdown circuitry.

For microwave link equipment an alternative and more effective solution is the quarter wave stub protector. These units must be tuned to the frequency in use but are capable of reasonably large bandwidth. For example a quarter wave stub protector centred on 2.4GHz has a usable bandwidth of +-100MHz. Figure 20 shows a typical unit.

Let's STUDY Jointly reason of Surge and use of Surge Protection including Installation GuideLine with Wiring Rules

UL SPD Types - Per 1449 4th Edition

Type 1- One port. permanently connected SPDs, except for watt- hour meter socket enclosure, intended for installation between the secondary of the service transformer and the line side of the service equpment overcurrent device, as well as the load side, including watt-hour meter socket enclosures and Molded Case SPDs intended to be installed without an external overcurrent protective device. Type 1 SPDs for use in PV systems can be connected between the PV aarry and the main service disconnect.

DIN-RAIL SPDs are open Type 1.

Type 2- Permanently connected SPDs intended for installation on the load side of the service equipment overcurrent device, including SPDs located at the branch panel and Model Case SPDs.

Type 3 - Point of utilization SPDs, installed at a minimum conductor length of 10 meters (30 feet) from the electrical service panel to the point of utilization, for example cord connected, direct plug-in receptacle type and SPDs installed at the utilization equipment being protected. See marking in 80.3. The distance (10 meters) is exclusive of conductors provided with or used to attach SPDs.

Note: type 2 and 3 SPDs ware previously known as TVSSs,

Type 4 - Component Assemblies - Component assembly consisting of one or more Type 5 components together with a disconnect (integral or external) or a means of complying with the limited current tests in 44.4.

Type 1, 2, 3 Component Assemblies - Consists of a Type 4 component assembly with internal or external short

circuitprotection.

Type 5 - Discrete component surge suppressors such as MOVS that may be mounted on a PVVB connected by its leads or provided within an enciosure with mounting means and wiring terminations. V/Uπ----nominal system voltage.

A nominal value assigned to designate a system of a given voltage class in accordance w ANSI CB4,1. Typical voltages include 120 208, 240, 277, 347, 480,6000 Vac.

V --- Voltage Protection RatingA ring selected from a list of preferred values as given inToble 63. 1 of UL 1449 4th Edition and assigned to each mode of protection. The value of V is determined as the nearest highest value taken from Table 63.1 to the measured limiting voltage determined during the surge test using the compination wave generator at a setting of 6 kV, 3kA. It is also known as let-through voltage.

Guide to Surge Protection Devices (SPDs): selection, application and theory

The following common terminologies, as recognised by BS EN 61643/IEC 62305 are used throughout SPD specifications in order to aid correct selection and aredefined as follows:

Nominal Voltage UO is the line voltage to Earth a.c. voltage of the mains system (derived from the nominal system voltage) for which the SPD is designed to is the voltage by which the power system is designated -e g. 230V.

Maximum Continuous Operating Voltage Uc is the maximum RMS voltage that may be continuously applied to the SPD's mode of protection e.g. phase to neutralmode. This is equivalent to the SPD's rated peak voltage.

Temporary Overvoltage UT is the stated test value of momentary voltage increaseor overvoltage that the power SPD must withstand safely for a defined time. Temporary overvoltages, typically lasting up to several seconds, usually

originate from switching operations or wiring faults (for example, sudden load rejection, single phase faults) as well as mains abnormalities such as ferro-resonance effects and harmonics.

Impulse Current Amp is defined by three parameters, a current peak with a chargeand a specific energy typically simulated with the 10/350us waveform to represent partial lightning currents. This waveform is used with peak Imp current value stated. for the mains Type 1 SPD Class I test and typically for data telecom SPD TestCategory D.

Nominal Discharge Current /nspd is a defined nominal peak current value through the SPD, with an 8/20µs current waveshape. This is used for classification of mains SPDs (Class II test) and also for preconditioning of SPDs In Class I and Class II tests.

Maximum Discharge Current /maxis the peak current value through the SPD, with an B/20us waveshape. Imax is

declared for mains Type 2 SPDs in accordance to the test sequence of the Class II operating duty test. In general, max is greater than /nspd.

Surge protective devices (SPDs)Surge protective devices mainly consist of voltage-dependent resistors (varistors, suppressor diodes) and / or spark gaps (discharge paths). Surge protective devices are used to protect other electrical equipment and installations against inadmissibly high surges and / or to establish equipotential bonding. Surge protective devices are categorised:

- Surge protective devices for power supply installations and devices
- for nominal voltage ranges up to 1000 V
- according to EN 61643-11:2012 into type 1 / 2 / 3 SPDs
- according to IEC 61643-11:2011 into class I / II / III SPDs

Surge protective devices for information technology installations and devices

for protecting modern electronic equipment in telecommunications and signalling networks with nominal voltages up to 1000 V AC effective value) and 1500 V DC. against the indirect and direct effects of lightning strikes and other transients.

- according to IEC 61643-21:2009 and EN 61643-21: 2010.
- Isolating spark gaps for earth-termination systems or equipotential bonding
- Surge protective devices for use in photovoltaic systems
- for nominal voltage ranges up to 1500 V
- according to EN 50539-11:2013 into type 1 / 2 SPDs
- impulse current discharge capacity and protective effect into:
- Lightning current arresters / coordinated lightning current arresters
- for protecting installations and equipment against interference resulting from direct or nearby lightning strikes
- Surge arresters
- for protecting installations, equipment and terminal devices against remote lightning strikes, switching over-voltages as well as electrostatic discharges (installed at the boundaries downstream .

Combined arresters

for protecting installations, equipment and terminal devices against interference resulting from direct or nearby lightning strikes (installed at the boundaries between LPZ 0A and 1 as well as 0A and 2).

Technical data of surge protective devices

The technical data of surge protective devices include information on their conditions of use according to their:

Application (e.g. installation, mains conditions, temperature)

Performance in case of interference (e.g. impulse current discharge capacity, follow current extinguishing capability, voltage protection level, response time)

Performance during operation (e.g. nominal current, attenuation, insulation resistance)

Performance in case of failure (e.g. backup fuse, disconnector, failsafe, remote signalling option)

Short-circuit withstand capability

The short-circuit withstand capability is the value of the prospective power-frequency short-circuit current handled by the surge protective device when the relevant maximum backup fuse is connected upstream.

Short-circuit rating ISCPV of an SPD in a photovoltaic (PV) system

Maximum uninfluenced short-circuit current which the SPD, alone or in conjunction with its disconnection devices, is able to withstand.

Temporary overvoltage (TOV)

Temporary overvoltage may be present at the surge protective device for a short period of time due to a fault in the high-voltage system. This must be clearly distinguished from a transient caused by a lightning strike or a switching operation, which last no longer than about 1 ms. The amplitude UT and the duration of this temporary overvoltage are specified in EN 61643-11 (200 ms, 5 s or 120 min.) and are individually tested for the relevant SPDs according to the system configuration (TN, TT, etc.). The SPD can either a) reliably fail (TOV safety) or b) be TOV-resistant (TOV withstand), meaning that it is completely operational during and following

temporary over-voltages.
Sparkgap Protection

Spark gaps are intend to provide galvanic isolation between electrical installation parts where direct connections are not permitted. The galvanic isolation prevents not only electrochemical corrosion but provides also a connection capable of carrying lightning current. For connecting different earthing systems, the aim being to make optimum use of all earthers for lightning protection equipotential bonding.

Earthing Distance Maximum 500mtr allowed for Electrical and 300mtrs allowed for Low Voltage Equipment's.

Shortest Discharge Path , Less Joints No Sharp Bend ,Round Conductor for routing Earthing up to Equipment's, all buried Joint should be Exothermic Weld

<u>Director:- Mr. Manish Khatri</u> <u>Head Marketing & Sales:- Mr. Mahesh Chandra Manav</u>

Link Vue System Pvt Ltd

Head Office: I-19, Karampura, New Moti Nagar, New Delhi, (India). Mobile: +91-9811247237 Tel: +91 11 4559778 Email:manav.chandra@linkvuesystem.com Email:manish@linkvuesystem.com Website: www.linkvuesystem.com

Link Vue Systems Pty Ltd

2 BRUCE STREET, BLACKTOWN NSW 2148, Sydney, Australia Mobile:+61-423064098, Mobile: +91-9811247237, <u>Email:manav.chandra@linkvuesystem.com</u> visit webpage www.linkvuesystem.com

INT: INDIA/AUSTRALIA

Right Solution Partner for your Problems Ling A Genuine Approach Latest Technolgies Adoption

India

Australia

We offer end to end engineering solutions from project conceptualization, engineering design, Constancy with incorporates our own In-house Singapore brand of Ethernet M2M connectivity wide range of products with International industries approvals of CE, FCC & ROHS standards, Moreover We are the strategic partners, sole distributors for world' leading Enterprise ICT & Industrial class Surveillances security products from products selection to project commissioning services for industries assisted with onshore & offshore 24X7 service support Link Vue System Private Limited - India established to provide premier Integrated solutions for Industrial & Enterprise Grade Ethernet Connectivity / Wireless WLAN, GSM Technology incorporates value added supply services & End to End support for Govt.& small to large businesses to plan, build deploy & manage their Industrial Automation SCADA communication control, Ethernet LAN/WAN networks System infrastructure, CCTV Surveillances, Access Control as per their standards - all within their stipulated budget and cost effective solution.

With our extensive knowledge & rich industry hands-on experience in the Networks communication & Industrial Automation arena, we continuously innovate and upgrade our products range aimed the varied applications needs of our customers, we maintain high quality standards for our offering products which we have received many quality and testing certifications from industries internationalcertifications bodies.

VIRTUALIZATION	
Centralization. Consolidation. You've got a long list of what ifs" and "must	
haves." We'll sit down with you and really listen to your needs, then design	
systems that perform optimally, increase productivity and reduce costs.	Services & Supports
	AMC/CAMC
IT & INDUSTRIAL COMMUNICATION BRAINS	 IT Technical Support Help Desk
Our clients are supported by our staff of experts plus a resource network of	 Server Implementation
Level 1 to Level 3 engineers. We'll make sure we address your problems	 Hardware Repair Services
economically and strategically We perfect your systems before you even see	 Software Configuration
them.	 Architecture & Implementation
	Problem Remediation & Rectification
IMPLEMENTATION AND SUPPORT	Hardware Repair Services
We don't drop off the parts and walk out the back door We manage the	 Project design & consultancy
project through implementation and then follow up to make sure everything	Asset Management
is working correctly. We see value when it's built into long-term success.	Warranty Services
Who is Link-Vue? We are, of course	
It's our passion to deliver peace of mind. Learn more about Link-Vue	
integrated IT products and solutions	

Performance Enabling Solutions

•Advanced CCTV Surveillances & Access control Security on Ethernet Platform

•Industrial & Enterprise Networking LAN/WAN, Wireless WLAN & GSM Data Loggers.

•IP Security Collaboration I Messaging Mission Critical Data Storages NAS /GRID

•Industrial Automation DCS | PLC | SCADA HMI | Industrial Computers Products & Implementations

•Consultancy in Enterprise and Industrial Automation Networks Design

•Sourcing of best Components Supply from in-house brand/ customized based on the project requirements for industrial and enterprise connectivity and automation verticals.

•IT Data Centre and ICT Products Infrastructure Management.

City Surveillance Empowering Vigilance

Industrial & Commercial Managed Gigabit POE / Unmanaged Switches & Media Convertors Models Series

More than 100 different RJ45 Copper & LC/ST/SC Fiber ports models available.

Physical Characteristics

Housing: Aluminum Alloy material with IP40 Protection Very light weight Rack mount , wall mount & Din Rail

Interfaces

Console Port: rs-232(RJ45 connector) Web GUI Interfaces Alarm Contact: 1 replay outputs, supports IP/MAC conflict

Power

Input Voltage: 220V AC (110-240V AC)@2A / (12-24) VDC Redundant dual inputs Plug-In Terminals: 5 Cores 5. 08mmTerminals Overload Current Protection: Present Reverse Polarity Protection: Present Redundant Protection: Present Connection: 1 removable 6-pin terminal blocks

Environmental Limits

Operating Temperature: -40 + 85 degree C Storage Temperature: -40 + 85 degree C Ambient Relative Humidity: 5%-95% (non-condensing)

EMS

EN61000-4-2 (ESD) Level 3 EN61000-4-3 (RS) Level 3 EN61000-4-4 (EFT) Level 3 EN61000-4-5 (Surge)Level 3 EN61000-4-6 (CS) Level 3 EN61000-4-16(Common-mode Conduction) Level 3 Shock: IEC 60068-2-27 Free Fall: IEC 60068-2-32 Vibration: IEC 60068-2-32 Vibration: IEC 60068-2-6 EMI: FCC CFR47 Part 15, EN55022/CISPR22, Class A Industry: I EC60068-2-6, I EC60068-2-27, I EC60068-2-32 Rail: EN501 55, EN501 21 -4 Traffic: NEMA TS-2

5 Years International Warranty

BMS Network Infrastructure System

- Backbone Routing & switching
- LAN & WAN Controllers to PLC connectivity.
- CCTV Surveillances, Access control temaserver
- & Fire Alarm connectivity.
- Servers & Workstation implementations.
- IT Data Center management & control monitoring
- Network Monitoring Systems (NMS) Implementation.

Solar Survilances Scada Network Systems

- CCTV Surveillances Plant field Area.
- SCADA Control room implementation.
- Ethernet Communication, Fiber optics splicing
- All Kind of LAN / WAN Implementations.
- GSM Data Loggers & RTU Communication.
- GSM celluier, Serial, Ethernet Data logger for solar power application.
- Progameble using IEC 61131-3 languages.

Oil, Gas & Process Industries

- CCTV Surveillances security incorporates.
- Ethernet LAN Networks infrastructure parameter boundary for Refinery division.
- CCTV Solution for Explosion & hazardous zone areas.
- Explosion Proof (ATEX) approved CCTV for pipeline automation.

- Real IT & Industrial connectivity people with hands-on live experience.
- Custom solutions built around your systems and processes.
- End-to-end application support.
- Ongoing client support & One team of experts for all IT needs.
- Same engineers work with you before and after the sale.
- Documentation of delivered solutions.
- Networking LAN & WAN, Security, Collaboration, Messaging Backup, Archiving, Disaster Recovery/Business Data storages NAS /GRID.

7

Power Networks Infrastructure

PERIMETER INTRUSION DETECTION SYSTEM (PIDS)SECURE YOUR PREMISES

Perimeter Intrusion Detection System (PIDS) is designed to protect assets within a perimeter by detecting intruders attempting to gain access and blocking such access using the control station. Blue Star R&R offers robust and reliable solutions for accurate detection of such unauthorized entry and protection of assets against these threats. The company's turnkey solutions can detect any unauthorized physical intrusions across the perimeter, assess the situation and track intruders for future actions. Features such as instant alarm generation and control by reporting to central monitoring station make it easier to manage such situations,

PIDS solutions from Link Vue Systems Pvt Ltd are based on microwave technology, Optical Fiber Cable (OFC) or video cameras. These can be fence mounted, buried underground or can be tailored for specific needs, based on customer requirements Seamless integration of PIDs with other security systems adds one more layer of comfort for the customer. This security system is well suited for military bases, government facilities oil refineriesPetrochemical plants, power plants, sea ports, airports, VIP residences. Storage yards and so on.

Link Vue System Trading Produts Portfolio

www.linkvuesystem.com

Protocon-P7M: Modbus RTU to Modbus TCP/IP

Protocon-P7M A gateway for your Building Automation solution

Protocon-P7M is a cost effective solutions to connect equipment's with similar communication Protocols and physical Media.

Protocon-P7M is a product from Sunlux that allows users to integrate new and existing Modbus/RTU serial devices to TCP/IP network-based devices. The gateway server allows MODBUS/TCP based Controllers and applications to communicate and interoperate with serial MODBUS RTUs.

Ethernet port

- 2 x RS485, 1 x RS232 port supports upto 30 nodes.

Protocols supported

· Modbus RTU, Modbus TCP/IP

Mapping data points Supported

· Maximum 500 data points

Applications

Energy Management with Building Automation Systems
 Integrated metering of HVAC systems and chillers

PRODUCT ORDERING INFORMATION:

MODEL	INTE	ORDER
Protocon-P7M: Modbus RTU to	1 x RS485	P7M-P1
	2 x RS485	P7M-P2
Modbus TCP/IP	2xRS485, 1 x RS232	P7M-P3

Input power	Input Voltage 12V DC, 300 mA.11W
Environmental	Operating Temperature 0 ° C to 55 ° C (Standard);
	Humidity 10-90% non-condensing
Processor	CPU Fan less - Cortex Controller
Interfaces	Software malfunction protection Watchdog timer Modbus Slave Choice of 2 - RS485 ports, 1 x RS232. 1 PFC input .
	RJ45-Ethernet (Modbus TCP/IP)
Communication	1x RS-485 (Screw-terminal) 10/100 Mbps Ethernet with auto-negotiation Serial port supports either 2-wire or 3-wire EIA-485 Baud rates from 2.4 to 115.2 kbps. The baud rate can be set with Web based Configuration Configuration software for data points mappings
Data points	Maximum 500 data points
Enclosure type	Sheet metal
Weight	225 Grams approximately
Dimension:	90MM (L) X 82MM (H) x 20mm (D)

Note: Mapping configuration Supported per unit ranges from min 1 to max 500 points.

TeleMONTM - Telemetric Monitoring System

Key Features

- MQTT support over 10/100 fast Ethernet (RJ45) or over built in 3G/4G Modern. Data encrypted with TLS
- Modbus RTU support on 2 x RS485 ports
- Modbus TCP support on 10/100 Fast Ethernet (RJ45)
- Device level security with TPM 2.0, Secure Boot
- Ruggedized (shock and vibration resistant) for challenging mobile and manufacturing environments
- Can be powered by 24V DC
- Provision for onboard data logging with real time stamp with configurable periodicity
- Configuration available through integrated web server

General Description

TeleMON™ is an industrial grade x86 based gateways. Telemon gateway provides two RS485 serial interface for Modbus RTU protocol, an ethernet interface for Modbus TCP and transfers the data to the cloud using MQTT (SSL/TLS) over 3G or 4G cellular modem or ethernet Interface. TeleMON gateway acquires data from legacy devices and modern sensors analyzes and make the data available at the cloud which would provide a platform for various applications like remote asset management, centralized monitoring etc.

TeleMON is specifically designed to implement data collection systems which operate according to the Internet of Things (IoT) paradigms; It allows bidirectional communication between field equipment and the Cloud software platform. All the data transferred to the cloud are encrypted with Transport Layer Security (TLS). It is possible to configure the MQTT message structure in order to better adapt to the different MQTT Brokers available (Amazon AWS, Mosquito etc.)

Ultra Sonic Sensor DASq and GSM Communication

Supply Voltage: 24 VDC Dimension : 75 x 75x 30 mm Communication 4G Protocol : MQTT to MCC room.

Protocol Converters

Protocol	CAN Open	CC Link	DeviceNet	Ethernet iP	Modbus RTU	Modbus TCP	Profibus	Profinet	
CAN open	1	1	1	1	1	1	*	1	
DeviceNet	4	~	1	1	~	1	1	1	-
Ethernet IP	1	1	1	1	1	1	1	1	12
Aodbus RTU	1	~	1	1	1	1	1	1	2
Andbus TCP	1	1	1	1	1	1	1	1	006-1
Profibus	1	*	1	1	1	1	1	1	II NO
Profinet	1	~	1	1	1	1	*	*	
M-Bus			÷.		1	1	÷.		0

Profibus Products

The PROFIBUS Tester 5 BC-700-PB is a powerful diagnostic and troubleshooting tool for testing the cables, measuring the signals and analysing the communication of PROFIBUS networks.

Combination of signal tester, storage oscilloscope, protocol analyzer, master simulator and cable tester functionality in a single diagnostics tool

Repeater

Profibus Cable Stripper

Profibus Connector

EKS Engel; Germany	 Fiber Optic Media Converter's DIN rail mounted MINI Patch panels
Elesta GmbH. Switzerland	Relays with Forcibly Guided Contacts
Fint, Norway	 Gateway for HART/ FF/ PROFIBUS PA / MODBUS Wireless HART Embedded Gateways for HART/ FF/ PROFIBUS PA / MODBUS
Helmholz, Germany	 Profibus Connectors with & w/o LED/ PG Port Profinet RJ45 Connector Profibus DP-DP Coupler Profibus 2/4/6 way repeaters MPI Module CAN Bus Module REX 100/ REX 200/REX 250 - Remote Access & Maintenance solutions Profinet Switches PN-PN Couplers

Smart Grid & Smart City Solution

Our Product based on Industrial Protocol Development, Application Programming Interface and Software Platforms for Data Acquisition, Data Analysis and Data Monitoring for Numerous Industrial Applications. We always touch to Help Industries to Implement Concepts With Workable Solutions For Efficiency Improvement, Application Monitoring And Effective Control Processes, Systems And Machines. Our Product not only limited with Protocol Gateways, RTUs & SCADA we have recognized Products in the domain of Energy Management System as well as Power Factor Control prepared product list with our strong basket.

Smart cities depend on a smart grid to ensure reliable energy efficient and quality power Distribution System. Smart Grid is Digitalization of Power Transmission and Distribution System.

Major areas of concern in the power distribution sector are high AT&C loss and poor power distribution reliability. To address these problems accurate measurement, diagnosis and Local remedial action is essential.

The reliability of power is measured in the terms of SAFI and SAIDI which requires solution besed on real time monitoring and Control.

The Feeder Remote Terminal Unit (FRTU) for SAIFA /SAIDI measurement is required at primary substation to our data from status Input devices of breakers or protection relay viz O/C & E/F, CMRs, Multifunction Transducers (MFTs), discrete transducers for analogdata The FRTUs shall be interfaced with the substation equipment, communication equipment, power supply distribution boards;

Along with effective Monitoring, FRTU should also incorporate self-healing and logic for taster restoration of supply even in the absence of control Centre SCADAIntelligent Protocol Gateways in Smart Grid combine the Functionality of Traditional Protocol Converters and IoT Gateways, TheseGateways not only help in interoperability between various equipment supporting difforant Protocols as per Functional requirements.But also support clustering data processing. Processing, network security and Many connectivity Options

RS Consultancy is Pioneer in Engineering and Development of Smart Grid Solutions in Partnership with Global Market Leader in IoT Hardware Advantech Co. Ltd, we Offer indigenized Solutions with.

- Intelligent FRTU
- Smart Grid IoT Gateway
- RSK PGA Smart Utilities

Smart Grid Edge Gateway

RISK POA Smart Grid Edge Gateway is the Combination of Highly Rugged and Best in Market Hardware from Advantech Talwain and Our RISK PGA APL our configuration utility a User Friendly and User can easily configure protocols megoing through remarked bare for all supported protocols like IEC-104. DNP 5.0, IEC-103, DLMG site, it also uses IED configuration files to import complex IEC 61650 data structures and same for other intelligent device Ibraries.

		Produced Support	And the second s
uning in allow	+ Magong is could a or of photos is free as presented as	+ 00.41939	· BC STREEt in Hollow
attware 108, app	· Many In Mary (Mary In Con. 1971); Many printed measured input life	 acabatics.vd4 	· Minimum on 6 19561
Taget you have	+ Degrows to the local of the books with all the dot lots and the	 IIC IOE75 101 	· Monthan to: UZ-108
	(HP20. (100 out CD1000) obsets an addition for confraction diff.	· 00140670-103	· Alastina in http://
com Santigorad Jills film	+ N 022 ANS MERCANN AS A REPORT OF SERVICE PROPERTY STREET, ST	+ 3597 315	+ and list to any list.
adding TUP/IP	+ Linkson wirker, Michael 12000 (manne in 2000) derme bereiten alti \$12	 Acceptus antarteriore 	· and a restored with the r
Hard of the state of the state of the	with annu molecula	· invite	· ALC ADDRESS IN ALC: MAR
intere	· Index of the RE Associate WIND, before in the set of the statement	+ DPC UN	 NC 163 to 400 104
instituent inpport	grande des Armenals	(* 10.005 ·	 BUSIN TO HEC 1994
aran Internet stagent	 Codelar modelar UV-DH materies of CASA desires to observe with UV-DMML material industry of p 	· HOTE	· Dates to Manhaire
and the second suggests	Distance of the BC 101 monetor BC/C/L Junior to Interface and Affrican promoti and produced processes		1
		40.104	
	KEITERSA .		
	Hen are		
-		RC104	14-100
(1)		RESH	4-100
	HE HE	10 M	4-100
		AC SH	
		RCSH	
		AC SH	
		AC SH	-
		HUH INTE	
		HE SH	
		AC DH	
		AC DH	
		AC DH	
		AC DH	

Hardware Details

UNICETTE RIFFER.

- · THE REPORT OF SHEEPER CALL IN THE REPORT OF · Grant Street Serger
- Bud differ compositions
- · 2 or 201 232-923 statistical second parties
- A any TRANSFORMENT DESIGNATION.
- + Lo interference interactions into
- with the special production of the state

DOLLARD AND PER-

- TO DOWN AN ADDRESS OF ANY DOWN, AND REAL
- · house well for 1 (16)
- A POST OF CONTRACTOR OF STREET,
- bottomieli

Specifications - IEC 101 Client/Server

- 2 + 1000 May 7 doit perce
- bases and little part in order
- CONTRACTOR AND ADDRESS ADDRESS ADDRESS

Specifications - IEC 103 Client

• Instantistication		 Galaxyon Manifel Trapport 		
	The taged turner	· You are in the second		
	This larger's barries with matrix title Minescravity 1 This dagger's summaries with respire to a		Hogo Post Internation (10,00,00, 1) High part Internation will free tog (0,07,00,0) High part Internation (10,07,00,0)	
trent dentes Referativ	Operated Conservation Operated Conservations, Planty, Conservation Operation Statement		Instances the second seco	
	* 1000.1 homas		Hamman Inne, Some side will fire top (d, H , H , J) (H) and the fait water side (M, M, N,	
Specifications - DNP 3.0 Client/Server			 Manage and a state when were lived in a particular data and the state of a state of the state of	
	P Adden		where we have been set on the Property of the local set of the	

6.00.0 + fluerter · Meanshal man, that Reampoint and all hop in (PBT sum & M. W. U. and the second s · Southin Address 4 Mappi Command Adv Institute (april 2012) 10. 11 ALTE SITE of · Communite an Arbitran + Strubbe Command with Interlege CODC 210, 10 + Chantel Seguri · Children approximation contributed \$1,125, No. 1. + Daniffary Street Course for any increase of X AA 12 4-lowing band party (Mat Principality and in additional and second contradicts in calls have + Home Children erest public horse or hing point metalent) · Doning hand + P Allenna · Posting [Adjud | Territorial + but the · Dyne fan de Fernened · HELL RADIAN · Designation of the second sector of the sector of · Caluel of Transmission (2011) Code Measure Internel · However, David Andrew

Specifications - SNTP/NTP Client

The galeway supports a Danole Nativork Time Protocol (DNTP/NTP) client service that can surchsorize the galeway's time to periodic update requality to a Convolutibil Universal Time BJTCI system.

Specifications - IEC 104 Client/Server

· Multiple Meanwr Shappert · Negatives of Description · The anteritation

ĪT

frin .

200

	· steps international de all (es, la
	· State and elements on the lag SCM* 10, 1
	+ Oliverse power internation BHCOP, NYS, 19
	+ Darkin preci Harmelan Alli, Iron Teg (K.20, 34, 5)
	+ Munuter This Internation Teach M. M. N. Y.
	* Stranger State, Remained Stranger (Stranger, 19, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
	· Structure rates, Acard Struct M. MI, NY 11
-	· Non-rise take, Maner terminant into ing \$5,96,70,71
	* New YORK, But Service Handle H. H.
	* Manufacture index. Boost interappents when with theming \$4,502,52
	· Youd over 110 million and this loss (PTR Terrory AL MY 75, 1)
	+ Destroyer interests on the splitter base (CP), No. 1.
	· Standard State, Manufact Value of Strengt (Protocols (6, 50, 70, 1)
	* Memory Inter, Rome Visco and York Statistics (2019) Number 20, No. 71, 71
	. We assume that the theory pairs are set from by $\mathcal{D}(\mathcal{D})$ and $\mathcal{B}(\mathcal{D},\mathcal{T},\mathcal{T})$
	* (mpt (committee metric))(1,30,30,30,30
	+ (new Development and Horizon (C.I.T., 75, 7)
and the second second	· State application concerned (CURAN), (C
card desiring	+ State (Ample Concept C.C.M.)
	Plane being second particular position of a plane particular.
	www.jobio-booker, to space alastical
	+ 2 Address
	+ Autom
warmen.	* NEX Antesia
PARTY AND	+ Case of Horsenine (2021
	4 Color Monage Printer
	+ Manufact Material

Modbus TCP/IP-Client/Server

1

The Modous TCPVP driver allows multiple independent, concurrent Ethernet connections. The connections may be Clients, severs, or a comprisition of both Clients and sines.

	A Trans Train of Facility
and month	A Print Strick Mary Invite Trajectory
	· Simon P Avilian
	A hugt from higher
product (+ title like (spine (2006)
and downers .	* Group Maloo Sur Dat Astron
	· Server Metro, 855, Sol. Advan-
	· Wenter Dariset Didy
	without and a second
Arrest.	when text
	· Connective here
	+ hold under Resident advantage for and American
and I	weight fault mining with an addition from the set of the
	Chief Breisge Bartel
uniti i	(+Earl advected on the fidebally system) of desired,

only on this (foreign a sold life

Specifications - IEC 61850 Client

Najarti ya isi 2012a
Band konstante PAC isi Na 82 uning Samul Yana

- + Dealerste Marriel Southy
- a Solary Swine Operator with Named Datasty
- · Devi-site & Harver's Brindly
- · Smith Nille Spring arts Common Stratts

Specifications - DLMS Client

SCORE supported	WE KIND & LANKED
Assessing 1	Balance Preserve Three (Three) Honore Three (Three)
-	 Decision terms being Bit internet being
	Court Mit Internationals KOLAND Internationals
September 1	482 Million Labor Frank, Frankey, Laborat Million Sci West Frank West Frank
Cartoria Arona	 + Milli (convert (seg)
(manufacture)	States and all part some Super-sone (2018) and a some investor

20

Battery Chargers for Grid TIE and OffGrid with Solar Panels

Descriptions	Specifications		
Battery configuration	51.2V -80 Ah		
Capacity of Individual Cell	3.2 V - 80 Ah		
Type of Cell	Prismatic		
Cell Chemistry	LFP		
Nominal Capacity	80 Ah		
Nominal Voltage	51.2 V		
Voltage Range	40.8 V ~ 58.4 V		
Total Energy	4096Wh		
Configuration	16S 1P		
Charging Current	Recommended 0.3C , .5C Maximum (40Amp)		
Discharging Current	0.5C standard, 0.95C Max. Discharging(76Amp)		
Recommended Discharging Cut-off Voltage	43.2 V		
Charging Time	Around 2~3 hours (@0.5C)		
Maximum Pulse Discharge Current	350 A (for 2 Sec.)		
Cycle Life @ DOD 80%	≥ 2000 Cycles @25°C		
Self Discharge rate	< 3% / 30 Days (standard charge 100% SOC & store at 25°C)		
	-20°C~65°C; humidity ≤ 85% (Discharging)		
working Temperature Range	0°C~50°C; humidity ≤ 85% (Charging)		
Storage Temperature Range	-20°C~45°C		
Battery Case Material	Metal		
Battery Pack Weight	Net Wt 40 Kg (Approx)		
Battery Pack Dimensions	400x360x250mm (LXWXH)		

Descriptions	Specifications
With Packing Dimensions	TBD*
Battery Link	165
Output Discharging Voltage Nominal	51.2V
Operating Humidity	0% - 90%
Storage Temperature	-20~45*C
Storage Humidity	0% - 90%
Protection Parameters	
Over Charge cut off Voltage	58.4 V
Deep Discharge cut off Voltage	40 V
Short Circuit Protection	Yes
Over Charge Protection	Yes
Cell Balancing	Passive Balancing/Active Balanceing
Communication	As per customer requirement
Degree of Protection	IP 66

Parameter	5KVA/48VDC
Grid Charger	
Grid Voltage Sync Range	170V-260V(±5V)
Grid Frequency Sync Range	50Hz±6%
Charger Peak Efficiency	Higher than 90%
Max Grid Import Power Capacity	Double of Inveter capacity dependent on battery charging current
Max Battery Amp(Charging)	5A to 20A selectable
Self Consumption	Lower than 4%
Recommended DG/GRID Capacity	Double of Inverter Capacity
SOLAR CHARGE CONTROLLER	
Controller Type	DSP
Charge Controller Type	MPPT
Charger Topology	BUCK
MAX PV Connection Capacity	5 KWP
No of MPPT Channels	1
Per Channel PV Capacity (Nominal/ Peak)	5 KWP
Max. Open Circuit PV Volts (Voc)	150 V
MPPT Voltage Range	65-130V
Minimum PV Voltage	65 V
Max I/P Amps per channel	104 A

Max Battery Amps during PV charging	Full Capacity in Boost Mode / Current Control in Float Mode as per Battery AH
Max Battery Amps during PV charging	LMLA, VRLA, SMF, Ni-Cd,Lifepo4: Charging Profile can be configured as per the battery requirement
Peak Charging Efficiency	Higher than 94% Upto 98%

Parameter	5KVA/48VDC
Inverter	
Controller Type	DSP
Switching Element	IGBT
Nominal Battery Voltage VDC	48
No of Phases/Connection Type	1Ph, 3 Wire-LNE
Nominal Output Voltage	230V AC ±2%
Output Frequency	50Hz ± 0.5%
Continues Output Power	4000 WP
Out put Amp	17A
Voltage Regulation (Stand Alone)	±2%
Frequency regulation (Stand Alone)	±0.5Hz
THD	THD less than 4%
Out Put Waveform	Pure Sine Wave
Galvanic Isolation	In built Isolation Transformer at Inverter Output
Output Power Factor	0.8 Lagging
Peak Efficiency (Full Load)	Higher than 85%
Overload capacity	125% FOR 60 SEC, 150% FOR 5 SEC / Can be customized
DG Compatibility	Available
Auto Bypass feature	Available
Grid Export Mode	Available, Enable/Disable Options available
Anti Islanding Function	Available, In Compliance with IEC 62116
Compatible IEC standards	IEC -61683:1999- As per MNRE Requirement

Parameter	5KVA/48VDC
Configuration	
Modes Available	3: Hybrid , Grid Export, Stand Alone
Battery Buffer Setting	Selectable from 25%,50%,75%
MPPT Modes	2
Indications	
LED	Grid On, PV On, Grid Charger On,, Load On Grid, Load On Battery , Fault
LCD Display Para	meters
Load Status	Load on,Batt Grid CHRG Grid Sharing
INPUT GRP	Voltage/Current frequency
Inverter GRP	Voltage/current
O/P GRP	Voltage/Current frequency
Solar GRP	PV Vol, Curr PV Power, PV Energy
Battery GRP	Voltage Status Current CH, Current DISC
Dash board	Input KW Output, KW,Solar KW
Faults	Recent 6 fault since last, reset
Alarm	Audible For Fault And Warnings
PROTECTIONS	
PV	Reverse Polarity Indication, optional-Surge Protection
Battery	Over/Under Voltage, Over Charge , Optional - Reverse Polarity .Over Temp
Grid	Over/ under Voltage, Over/ Under Frequency, Optional - Surge Protection
Load	Overloads, Short circuit
Circuit Breakers	Grid Input MCB, Battery Input MCB, PV Input MCB, Load Rotary Switch
Temperature	Inverter Over Temperature (optional)

Parameter	5KVA/48VDC
Enclosure	
Degree of Protection	IP 66
Cooling	Forced Fan Cooling
Noise	<50dB
Color	SLATE 7015
Termination	Bottom
Weight	115 KGS
Dimension	W : 345 mm D: 650 mm : H: 740 mm
Environmental	
Temperature Range (Operating)	0 to 50°C
Temperature Range (Storage)	-10 to 50°C
Altitude (max)	1000 m
Humidity	0-95% NON Condensing
Compatible IEC standards	IEC- 60068-2-1, IEC-60068-2-2, IEC-60068-2-14, IEC-60068-
Connectivity	RS-232/GSM

Spark gaps are intend to provide galvanic isolation between electrical installation parts where direct connections are not permitted. The galvanic isolation prevents not only electrochemical corrosion but provides also a connection capable of carrying lightning current. For connecting different earthing systems, the aim being to make optimum use of all earthers for lightning protection equipotential bonding.

Activate Window Go to Settings to acti

UL SPD Types - Per 1449 4th Edition

Type 1- One port. permanently connected SPDs, except for watt- hour meter socket enclosure, intended for installation between the secondary of the service transformer and the line side of the service equpment overcurrent device, as well as the load side, including watt-hour meter socket enclosures and Molded Case SPDs intended to be installed without an external overcurrent protective device. Type 1 SPDs for use in PV systems can be connected between the PV aarry and the main service disconnect.

DIN-RAIL SPDs are open Type 1.

Type 2- Permanently connected SPDs intended for installation on the load side of the service equipment overcurrent device, including SPDs located at the branch panel and Model Case SPDs.

Type 3 - Point of utilization SPDs, installed at a minimum conductor length of 10 meters (30 feet) from the electrical service panel to the point of utilization, for example cord connected, direct plug-in receptacle type and SPDs installed at the utilization equipment being protected. See marking in 80.3. The distance (10 meters) is exclusive of conductors provided with or used to attach SPDs.

Note: type 2 and 3 SPDs ware previously known as TVSSs,

Type 4 - Component Assemblies - Component assembly consisting of one or more Type 5 components together with a disconnect (integral or external) or a means of complying with the limited current tests in 44.4.

Type 1, 2, 3 Component Assemblies - Consists of a Type 4 component assembly with internal or external short

circuitprotection.

Type 5 - Discrete component surge suppressors such as MOVS that may be mounted on a PVVB connected by its leads or provided within an enciosure with mounting means and wiring terminations. V/U π ----nominal system voltage.

A nominal value assigned to designate a system of a given voltage class in accordance w ANSI CB4,1. Typical voltages include 120 208, 240, 277, 347, 480,6000 Vac.

V --- Voltage Protection Rating

A ring selected from a list of preferred values as given inToble 63. 1 of UL 1449 4th Edition and assigned to each mode of protection. The value of V is determined as the nearest highest value taken from Table 63.1 to the measured limiting voltage determined during the surge test using the compination wave generator at a setting of 6 kV, 3kA. It is also known as let-through voltage.

Guide to Surge Protection Devices (SPDs): selection, application and theory

The following common terminologies, as recognised by BS EN 61643/IEC 62305 are used throughout SPD specifications in order to aid correct selection and aredefined as follows:

Nominal Voltage UO is the line voltage to Earth a.c. voltage of the mains system (derived from the nominal system voltage) for which the SPD is designed to is the voltage by which the power system is designated -e g. 230V.

Maximum Continuous Operating Voltage Uc is the maximum RMS voltage that may be continuously applied to the SPD's mode of protection e.g. phase to neutralmode. This is equivalent to the SPD's rated peak voltage.

Temporary Overvoltage UT is the stated test value of momentary voltage increaseor overvoltage that the power SPD must withstand safely for a defined time. Temporary overvoltages, typically lasting up to several seconds, usually

originate from switching operations or wiring faults (for example, sudden load rejection, single phase faults) as well as mains abnormalities such as ferro-resonance effects and harmonics.

Impulse Current Amp is defined by three parameters, a current peak with a chargeand a specific energy typically simulated with the 10/350us waveform to represent partial lightning currents. This waveform is used with peak Imp current value stated. for the mains Type 1 SPD Class I test and typically for data telecom SPD TestCategory D.

Nominal Discharge Current /nspdis a defined nominal peak current value through the SPD, with an 8/20µs current waveshape. This is used for classification of mains SPDs(Class II test) and also for preconditioning of SPDs In Class I and Class IItests.

Maximum Discharge Current /maxis the peak current value through the SPD, with an B/20us waveshape. Imax is

declared for mains Type 2 SPDs in accordance to the test sequence of the Class II operating duty test. In general, max is greater than /nspd.

Combined Impulse Test with Open Circuit Voltage Uoc is a hybrid 1.2/50µs voltage test combined with an8/20µs current. The test is performed using a combination wave generator where its open circuit voltage is defined as Log-typically 6kV 1,2/50µs for the mains Class III test and up to 4kV 12/50µs for signal/telecom Test Category C. With an

value of Uoc (3KA 8 20us for the mains Class I test and up to 2kA 8/20us for signal telecom Test Category C). With both voltage and current test waveforms, the combined impulse test is designed to stress alltechnologies used within SPDS Voltage Protection Level Up is the key parameter that characterises the performance of the SPD in limiting the transient overvoltage across its terminals Alow protection level value (also known as let-through voltage) is therefore particularly critical for the effective protection and continued operation of electronic equipment The peak voltage protection level Up is declared when the SPD is tested with its stated nominal discharge current in for the peak current peak of imp) and is also declared when the SPD is subject to combined impulse test mars Class test forType 3 SPDS) as well as data telecom Test Categories C and B Modes' refer to tie combinations of conductors in which transient overvoltage car Lightning transients are generally disturbance with respect to Eat commonmode), whist switching transients are disturbances between line/phase and neutral (differential mode). During propagation mode conversion can occur (e.g. as a result of flashover). Hence transients can exist simultaneously between any combinations of conductors. Electronic systems now pervade almost every aspect of our lives, from the work environment, through filling the car and even shopping at the local supermarket. As a society, we are now heavily reliant on the continuous and efficientrunning of such systems. The use of computers, electronic process controls and telecommunications has 'increased exponentially' during the last two decades. Not only are there more systems in existence the physical size of the electronics involved has reduced considerably. This reduction in size means less energy is required to damage components.

The operation of electronic systems can be severely affected by lightning activityduring thunderstorms or electrical switching events. Both can cause very short duration increases in voltage on mains power and/or data

Communication/signal/telephone lines, with potentially devastatingconsequences. These increases in voltages are called surges or transient over voltages, all sorts of electronic equipment are at risk such as

Computers

- Building management systems
- PABX telephone exchanges CCTV equipment
- Fire and burglar alarms
- Uninterruptible power supplies programmable logic controllers (PLCS)
- Plant sensors, telemetry and data acquisition equipment
- Weighbridge installations

A lightning surge is severe enough to present a risk of loss of life through fire and/or electric shock hazards through a dangerous flashover. This can occur when the surge voltage exceeds the withstand rating of the cable insulation or equipment. The home environment has also evolved everyday activities rely on electronic equipment Products such as plasma televisions home theatre equipment alarms. microwaves and washing machines are all vulnerable to voltage surges Protecting all home electronic equipment is simple with the qualified installation of a surge protection device Products such as LCD screens. computer networks. data servers and industrial equipment including PLCs provide essential services now crucial to business operational productivity Protection against the effects of voltage surges inbusiness today is no longer an option, it has become a necessity.

Circuit breakers/fuses are not designed to provide overvoltage protection

Fuses and circuit breakers (aka Overcurrent Protective Devices (OCPDs) are designed to protect your home business equipment and possibly even your life from an event such as a short circuit or overload,

The Surge Protective Device (hereafter referred to as an SPD) is specifically designed to protect equipment from events such as extremely short duration high voltage spikes. These voltage spikesor transients are everyday occurrences and can be caused by anything from switching on a lamp toalightning storm most spikes are of low energy. Some spikes

Monoblock Single-Pole SPD **SPT25-XXX/1(S)**

Class I+Class II • Type 1•Type 2

Location of Use: Main Distribution Boards Network Systems: TN-S, TN-C, TT Mode of Protection: L-PE/N-PE Surge Ratings: I_{imp} = 25 kA (10/350 µs) I_= 25 kA(8/20 µs) IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV

Housing: Monoblock Design Compliance: IEC 61643-11:2011 EN 61643-11:2012

Monoblock Multi-Pole SPD SPT25-XXX/2(S)

Class I•Class II • Type 1•Type 2

Location of Use: Main Distribution Boards Network Systems: TN-S Mode of Protection: L-PE/L-PE, N-PE/N-PE Surge Ratings: I = 25 kA (10/350 µs) 1,= 25 kA(8/20 µs) IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV Housing: Monoblock Design Compliance: IEC 61643-11:2011 EN 61643-11:2012

Monoblock Multi-Pole SPD SPT25-XXX/3(S)

Class I•Class II • Type 1•Type 2

Location of Use: Main Distribution Boards Network Systems: TN-C Mode of Protection: L-PE / L-PE Surge Ratings: I_{unn} = 25 kA (10/350 µs) I_= 25 kA(8/20 µs) IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV Housing: Monoblock Design Compliance: IEC 61643-11:2011 EN 61543-11:2012

Monoblock Multi-Pole SPD SPT25-XXX/4(S)

Class I+Class II + Type 1+Type 2

Location of Use: Main Distribution Boards Network Systems: TN-S Mode of Protection: L-PE / L¹PE, NPE / N¹PE Surge Ratings: $I_{sup} = 25$ kA (10/350 µs) $I_n = 25$ kA (8/20 µs) IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV Housing: Monoblock Design Compliance: IEC 51643-11:2011 EN 61643-11:2012

Monoblock Multi-Pole SPD SPT25-XXX/1(S)+1

Class I•Class II • Type 1•Type 2

Location of Use: Main Distribution Boards Network Systems: TT, TN-S Mode of Protection: L-N / L-N, N-PE Surge Ratings: $I_{sep} = 25 \text{ kA} / 50 \text{ kA} (10/350 \mu s)$ $I_n = 25 \text{ kA} / 50 \text{ kA} (8/20 \mu s)$ IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV and GDT Housing: Monoblock Design Compliance: IEC 61643-11:2011 EN 61643-11:2012

Monoblock Multi-Pole SPD SPT25-XXX/3(S)+1

Class I•Class II • Type 1•Type 2

Location of Use: Main Distribution Boards Network Systems: TT, TN-S Mode of Protection: L-N / L¹N, N-PE Surge Ratings: $I_{enp} = 25 \text{ kA} / 100 \text{ kA} (10/350 \text{ µs})$ $I_n = 25 \text{ kA} / 100 \text{ kA} (8/20 \text{ µs})$ IEC/EN Category: Class I+II / Type 1+2 Protective Elements: High Energy MOV and GDT Housing: Monoblock Design Compliance: IEC 61643-11:2011 EN 61643-11:2012

New Modular Single Pole & Multi-pole Surge Protective Devices

New Housing Design Features

- **Contemporary** design .
- . Low residual protection level
- ٠ Lifetime indicators
- . Redesigned thermal disconnection
- . Patented protection technologies .
- No external back-up fuse required up to 315 A .
- Vibration and shock withstand capability ٠
- Space-saving design .
- Easy replacement .
- Patented module locking mechanism ٠
- Meets IEC/EN and UL 1449 4" Edition .

SPT12.5-XXX/1

Type 1/Type 2 SPD

SPT12.5-XXX/1(5)

SPT12.5-XXX/1(S)+1

0 8 8

SPT40-XXX/2(5)

... 0 100

0

-

8

- 22

1

10

B

SPT12.5-XXX/2(S)

Ĩ

SPT12.5-XXX/3(S)+1

SPT40-XXX/1(S)

BPT40-XXX/1(5)+1

SPT40-XXX/3(5)+1

0

Pluggable Multi-Pole SPD for Photovoltaic Systems

Class II • Type 2•Type 1CA Location of Use: String box, inverter Mode of Protection: (DC+)- PE, (DC-)- PE, (DC+)- (DC-) Surge Ratings: L = 20kA (8/20µx) Binist - up to 40NA (B/20pt) IEC/EN/UL Gategory: Class II/ Type 2/ Type 1CA Protective Elements: High Energy MOV Housing: Pluggable Design Compliance: IEC 01643-31:2018 EN 50539-11:2013 -A1 2014 UL 1440-4th Edition

12 SPT12.5-XXX/3(S)

SPT12.5-PVXXX-(5)

4 SPT40-XXX/3(5)

SPT40-PVXXX-(5)

SPT40-XXX/4(5)

SPT12.5-XXX/4(S)

In-line SPD for Coaxial & RF Systems

C1+C2+C3 IEC/EN Category: C1/C2/C3 Protection: Impedance Malched Maximum Operating: Voltage: 70, 180, 289 V Maximum Poak Pown: 40, 125, 300 W Frequency Range: DC - 2.8 GHz Surge Discharge Ratiogs: I n : 10 kA, 1 max : 20 kA Impedance: 50 C Insertion Loss: < 0.4 dB Return Loss: < 0.4 dB Return Loss: < 20 dB Termination: BNC Type (F-F, M-F) Housing: In-line Installation, Shielded Enclosure Compliance: IEC/EN 61643-21

SPTs for Telecommunication and Data Networks

The "PoE Surge Protector" permits the use of Power over Ethernet with nominal currents of up to 1 A. It can be snapped directly onto the hat call and uses it to create the necessary equipotential bonding. Alternatively, terminal protection using a separately connectable.

- Support for Power over Ethernel + up to 1 A (PoE+ according to IEEE 802.3at)
- · CAT (LA in the channel according to ANSI/TIA/EIA-568
- For installation in conformity with the lightning protection zone concept at the boundaries from 0 -2 and higher

Modular SPD for Single Pair

D1+C1+C2+C3

IEC/EN Category: D1/C1/C2/C3 Mode of Protection: Longitutinal, Transverse Coarse Protection: 3 Terminal GDT Voltages: 5, 12, 15, 24, 30°, 48, 60, 110 VDC Frequency Range: 30 MHz Surge Discharge Ratings: 5: 10 kA, Ima: 20 kA, Ima: 2.5:kA Series Load Current: 1 A Enclosure: DIN 43880 2/3 TE, DIN Rail Mount Terminals: Stranded to 4 mm2 Housing: Modular Design Compliance: IEC/EN 61643-21 UL 4978 4th Edition

LED Light for Outdoor Conditions

Earthing is Nothing less than Engineering

Maintenance Free Earthing installation as per IS3043(2018)

General Arrangements for Earth System	S.N.	Installations/ Current Capacity	IR Value Required	Soil Type/ Resistivity	Earth System
	1.	House hold earthing/ 3kA	8 ohm	Normal Soil/ upto 50 ohm-mtr	Single Electrode
				Sandy Soil/ between 50 to 2000 ohm-mtr	Single Electrode
25x3 mm cu strip (To be duplicated) 100x25x6		12-11-12		Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes
mm cu bus 1 T	2	Commercial	2 ohm	Normal Soil/ upto 50 ohm-mtr	Single Electrode
To equipment Exothermic Weldine		premises Office buildings/ 5kA		Sandy Soil/ upto 2000 ohm-mtr	Multiple Electrodes
				Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes
	3	Transformers, substation earthing, LT line equipment/ 15kA	1 - 2 ohm	Normal Soil/ upto 50 ohm-mtr	Single Electrode
				Sandy Soil/ upto 2000 ohm-mtr	Multiple Electrodes
				Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes
	4	Transformers, substation earthing, HT line equipment/ 40kA	less than 1 ohm	Normal Soil/ upto 50 ohm-mtr	Single Electrode
				Sandy Soil/ upto 2000 ohm-mtr	Multiple Electrodes
Earth electrode (Dimensions as perEarth design)				Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes
	5	Lightning arresters, extra high current applications etc./ 50kA	less than 1 ohm	Normal Soil/ upto 50 ohm-mtr	Single Electrode
				Sandy Soil/ upto 2000 ohm-mtr	Multiple Electrodes
				Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes
	6	PRS, UTS,	less than	Normal Soil/ upto 50 ohm-mtr	Single Electrode
5'x5'x10' pit or 300mm bore Earth electrode Installation		RTUS,FOIS, COIS, ATMs and data processing centre etc./5KA	0.5 ohm	Sandy Soil/ upto 2000 ohm-mtr	Multiple Electrodes
				Rocky Soil/ More than 2000 ohm-mtr	Multiple Electrodes

Maintenance Free Earthing Value Calcullation & Costing Per PIT

Thumb Rule for Calculate Number of Earthing Rod

The approximate earth resistance of the Rod/Pipe electrodes can be calculated by

Earth Resistance of the Rod/Pipe electrodes:

R= Kx pL

Where:

- $\label{eq:phi} \begin{array}{l} \rho = Resistivity of earth in Ohm-Meter\\ L = Length of the electrode in Meter,\\ d = Diameter of the electrode in Meter,\\ K = 0.75 if 25< L/d < 100,\\ K = 1 if 100 < L/d < 600,\\ K = 1.2 o/L if 600 < L/d < 300. \end{array}$

Number of Electrode if find out by Equation of R(d) = (1.5/N) x R

Where,

R(d) = Desired earth resistance R = Resistance of single electrode N = No. of electrodes installed in parallel at a distance of 3 to 4 Meter interval.

Example: Calculate Earthing Pipe Resistance and Number of Electrode for getting Earthing Resistance of 1 Ω . Soil Resistivity of p=40, Length=2.6 Meter. Diameter of Pipe = 38 mm.

Here:

L/d = 2.5/0.038=66.78 so K = 0.75

- The Earth Resistance of the Pipe electrodes R= K x p(L = 0.75×85/78 = 12 Ω One electrode the earth resistance is 12 Ω . To get Earth resistance of 1 Ω the total Number of electrodes required = (1.5×12)/1 = 18 No

- BOQ Per Earthing PIT
- 17.2mm Copper Bonded 3 Mtr ROD=1
- Earth Enhance Compound(Value 0.012) Ohm) Qty -30 KG
- Earthing Clamp Connector for Connecting FLAT STRIP/Conductor 01
- Earthing Strip /Conductor as per Equipment Load /Fault Current -10 Mtrs
- High Quality Industrial Plastic PIT Cover

KORS BRAND ADVANCED SOLUTIONS FOR ELECTRICAL SAFETY EARTHING LIGHTNING ARRESTERSURGE PROTECTION

YOUR TRUST OUR PROTECTION

Early Streamer Emission Lightning **Protection** System

PARATONEX LIGHTNING PROTECTION SYSTEMS

PARATONEX a pioneer in the design and manufacture of Lightning Rods, Surge Protection Device and Grounding Products, PARATONEX product ranges are of External protection (ESE Lightning rod and Faradisation), Internal protection (Surge protection device) and grounding/earthing products. With years of experience in the sector of lightning protection systems and after thoroughly studying the problems associated with lightning overtime, our company was established with modern lightning protection technologies. PARATONEX Lightning Protection products are available at the affordable cost and at the same time it offers higher quality than most other companies.

RESEARCH & DEVELOPMENT

As one of the leading companies in the field of lightning protection, PARATONEX has invested heavily in field and laboratory testing as part of its ongoing commitment to research and development.

Throughout the product development of the PARATONEX, the proto-type models were subjected to intense testing under high voltage conditions, Following further refinements, the PARATONEX ESE air terminals were subjected to final testing by an independently accredited test laboratory which completed testing in full compliance with the French National standard NF C 17-102: 2011. The final testing of PARATONEX ESE terminals showed effective performance as defined in the standard.

PARATONEX 5 POINT PLAN OF PROTECTION

PARATONEX is trusted world leader for providing high quality direct strike lightning protection, surge protection and grounding solutions. By recognizing the importance of an integrated lightning protection strategy, PARATONEX has incorporated several major concepts into a Five point plan of protection:

- 1. Capture the direct lightning strike
- 2. Dissipate energy into the grounding system
- 3. Creation of a bonded earthing system
- 4. Protection of incoming AC power feeders
- 5. Protection of signal, data, telecommunication & communication lines

PARATONEX operates in every region of the world and supports the global market with an extensive distribution network, helping to ensure that PARATONEX products are available for any project, regardless of size or location.

www.paratonex.com

39

Freedom Wire Connectors and Industrial Plug and Socket for

High Power Equipment's

We are offering Advance and Allegiance Type Plug and Socket for Power ,Data and Communication Port this is very important and useful for Office,Conference Hall ,Data Centers ,Large Customer Handling Places like Hotels, Shopping Mall , Hospitals , Railway Station, Airports and other public places . Indoor and out door purpose from 5Amps up to Max 400Amps Plug and Socket.

We are also offering Connectors for Power Cables wire Cable 1.5Sqmm to 6.00Sqmm Cable to Cable Free ,hanging, and Fixed Type Connections

PUD: Pop up socket

FZ-517B(Black color)

FZ-517W(whiter color)

FZ-517S(silver color)

FZ-517(B/W/S/G/H):Pop up ,3 socket with 2 damping;

FMD:Flush Mount Desktop

FZ-507S

Alu. Profile for under table

Industrial socket

HTD-140-I dia:140mm; Stainless steel

FZ-507B

Plastic Profile for under table

FZ-536

Hidden coverplate with outlets

FZ-S66-1 IP68 power painted stainless steel stand pole

HTD-146K/KP-I lid:146*146mm square brass

IP44 Wall mounted socket

SF1311

SF1411

SF1411

IP67 Wall mounted plug SF1362 SF1462 SF1562 IP67 Panel mounted plug

SF1352

SF1552

IP44 Plugs IP67 250A Large current plug IP67 420A Large current plug

SF1452

SFS120

SF2402

SF4402

SFD1302

SFD1202

MC 4 Connectors DC Voltage 1500 V-1800V 30Amps

Electric Vehicle and ElectricVehicle ChargingConnectors, Cable

Harness

AC EV Charger Connector

AC EV Charger Socket

Type 1 EV Plug (SAE J1772)

CCS Combo 1 EV Plug

DC EV Charger Connector

Type 2 Female EV Plug

CCS Combo 2 EV Plug

Type 2 Male EV Plug

CHAdeMO EV Plug

Type 1 EV Socket

Type 2 Female EV Socket

Type 2 Male EV Socket

DC EV Charger Socket

CCS Combo 1 Inlet Socket

CCS Combo 2 Inlet Socket

OlAdeMO InletSocket

(CVF-Lumpean Standards Female IV Plug / Type 2 Female IV Plug With (V Cable)

(TVA-American Standards EV Plug / Type 1 EV Plug With EV Cable)

(EVFM-European Standards Female to Male EV Plug / Type 2 to Type 2 EV Charging Cable)

(LVAE=American Standards to European Standards EV Plug / Type 1 to Type 2 EV Charging Cable)

48

GB/T DC Charger Connector

Product Introduction:

EV cable is a kind of fleatible cable to connect electric vehicle with charging pile or power sucket, high quality organs: free copper conductor ensures excellent conductive effect; 1PE insulation material is suff and high strength; cable sheat is rande from high performance 1PE, which possess the characteristic as weatherability, high/flow emparison there resistance, and the cable is suff, etails, first index and work. Thanden is tow temperature, LV Cables for floetrist vehicle conductive charging system are fit for flattery floetrist vehicle, varie Cable which (FV) and which (FV) and work which would in charging connection become electric vehicle and power supply; or used in floetfit: Vehicle charging facility & Charge interface.

AC EV Charging Cable

DC fast Charger Cable

AC Single Phase (TUV)				
6	3x2.5mm*+2x0.5mm*	16Amp		Black Orange Green
	3ati Omm*+2x0.5mm*	32Amp	AMONICIPATION	
	3x8.0mm*+2x0.5mm*	40Amp	420651204	
	3x10mm*+2x0.5mm*	filAmp		
C Single Phase (SIL)				
8	Is14AWG+ Ls18AWG	16Amp		Black Orange Geren
	3x10AWG+1x18AWG	37Amp	60000	
	2x8AWG+1x10AWG+1x16AWG	40Amp	6 SHOV	
	2x8AWG+1x10AWG+1x16AWG	50Amp		
C Three Phase (TUV)	÷		1 2	
ØE	5x2.5mm*+2x0.5mm*	16Amp		Illack Orange Green
	5x6.0mm ² +2x0.5mm ²	32Amp	410/7504	
	5x10mm*+2x0.5mm*	63Amp	430/7304	
	5+13.5mm ¹ +2x0.5mm ²	70Amp		
Cfast Charger (TUV)				
8 €	2x16mm*+1x25mm*+6x0.75mm*	80Amp		Black Orange Green
	2x35mm*+1x25mm*+6x0.75mm*	T.P.Amer	750V/1000V	
	2x35mm?+3x6.0mm*+8x0.75mm?	as much		
	2x50mm2+1x25mm2+6x0.75mm2	100000		
	2x50mm*+3x6.0mm*+8x0.75mm*	the state		
	2x70mm ² +1x25mm ² +6a0.75mm ³	324mm		
	2x70mm2+3x6.cmm2+8x0.75mm2	and a state of the		

Conductor: Soft annealed stranded Bare Copper

• Cover: Non-woven fabrics • Sheath: 125°C halogen free TPE or TPU

. Color: Mack, Orange, Green

+ Rated Volatage: AC 450/750V.OC 1000V + Rated temperature: -25°C upto +125°C • Voltage Test: 2.5KV AC /15min . No Breakdow + Short circuit using temperature: + 200°C 5s Crush Resistance : SkN ,IKm/h,220KPa,No Breakdown
Hame Test: VW-1 test method comply with UL2556

GB/T DC Charger Socket

Type 2 Male Inlet Socket With Cable

Type 1 to Type 1 I'V Socket **EV** Adapter Cable

EV Convertor Cable

CCS Combo 2 Plug With Cable

Type 1 to Type 2 EV Adapter Co

EV Converter Cable

CCS 1 to CCS2 EV Plug I'V Adapter Cable

Product Description:

+ Insulation: 125°C halogen free TPL or 1PU

• Filler: Cotton thread

You are in Right Hand We are Right Partner For You Genuine and Professional DEAL

Director:- Mr. Manish Khatri

Head Marketing & Sales:- Mr. Mahesh Chandra Manav

•India

Link Vue System Pvt Ltd

Head Office: I-19, Karampura, New Moti Nagar, New Delhi, (India). Mobile: +91-9811247237 Tel: +91 11 45597781 <u>Email:manav.chandra@linkvuesystem.com</u> <u>Email:manish@linkvuesystem.com</u> Website: <u>www.linkvuesystem.com</u>

•Australia Sydney Link Vue Systems Pty Ltd

2 BRUCE STREET, BLACKTOWN NSW 2148, Sydney, Australia Mobile:+61-423064098, <u>Email:pawandeep@linkvuesystem.com</u> Mobile: +91-9811247237, <u>Email:manav.chandra@linkvuesystem.com</u>